ORIGINAL ARTICLE

肺野末梢の小型肺腺癌に対する MRI 拡散強調画像による悪性度の評価

田中良太¹・堀越浩幸²・吉田 勤¹・中里宜正¹・鈴木邦明³・ 佐藤浩二³・飯島美砂⁴・呉屋朝幸⁵・湊 浩一³

Diffusion Weighted Imaging (DWI) by MRI Evaluates the Subtypes of Peripheral and Small Lung Adenocarcinoma

Ryota Tanaka¹; Hiroyuki Horikoshi²; Tsutomu Yoshida¹; Yoshimasa Nakazato¹; Kuniaki Suzuki³; Koji Sato³; Misa Iijima⁴; Tomoyuki Goya⁵; Koichi Minato³

¹Department of Thoracic Surgery, ²Department of Diagnostic Radiology, ³Department of Chemotherapy, ⁴Department of Pathology, Gunma Prefectural Cancer Center, Japan; ⁵Department of Surgery, Kyorin University School of Medicine, Japan.

ABSTRACT — **Objective.** We evaluated the usefulness of magnetic resonance imaging (MRI) by comparison of diffusion weighted imaging (DWI) studies and pathological findings in peripheral and small lung adenocarcinomas. **Materials and Methods.** From May 2005 to December 2007, 38 patients with lung adenocarcinomas measuring 2 cm or less in greatest dimension underwent a surgical operation including preoperative MRI study in Gunma Prefectural Cancer Center. Of all the tumors, 12 were bronchioloalveolar carcinoma (so-called Noguchi type A and B; type A + B group), 21 were adenocarcinomas with mixed subtypes (so-called Noguchi type C; type C group) and 5 were the other histological subtypes of adenocarcinoma (Noguchi type D and E in this study; type D + E group). The signal intensities of a lesion (*DWI*) and the spinal cord (*SC*) were severally analyzed in the region of interests (ROIs), and the *DWI/SC* ratio for the lesions were as follows: 0.444 ± 0.283 (mean \pm standard deviation) for type A + B group, 0.985 \pm 0.513 for type C group, and 0.790 \pm 0.344 for type D + E group. The mean *DWI/SC* ratio of type A + B group was significantly lower than those of type C (p = 0.0021) and type D + E group (p = 0.0468). **Conclusion**. DWI could therefore be a useful diagnostic modality for differentiating the subtypes of lung adenocarcinomas, and the MRI findings may thus provide useful supplementary information before surgery enabling limited resections.

(JJLC. 2009;49:17-24)

KEY WORDS ----- Diffusion weighted imaging, DWI, MRI, Lung cancer, Adenocarcinoma

Reprints: Ryota Tanaka, Department of Thoracic Surgery, Gunma Prefectural Cancer Center, 617-1 Takabayashi-nishi-machi, Ohtashi, Gunma 373-8550, Japan (e-mail: ryotaseason2009@yahoo.co.jp).

Received July 18, 2008; accepted October 23, 2008.

要旨 — 目的. 末梢型の小型肺腺癌を対象として, MRI 拡散強調画像の画像解析と切除標本の病理学的な所見と を対比しその有用性を検討した. 対象と方法. 2005 年 5 月から 2007 年 12 月までに当センターで手術を施行し た,病理学的な腫瘍長径が 2 cm 以下の小型肺腺癌 38 例を対象とした. 対象症例を, Noguchi 分類の Type A + Bを非浸潤癌 (n=12), Type C を初期浸潤癌 (n=21), Type D+E を浸潤癌 (n=5) と定義した. 病巣部の信号 強度 (DWI) を脊髄部の信号強度 (SC) で割ることでえ られた比率 (DWI/SC比) を算出した. CT と DWI/SC 比の画像解析データをもとに ROC (receiver operating characteristic) 曲線を作成し比較検討した. 結果. 各浸 潤度別の DWI/SC比 (平均値) は非浸潤癌が 0.444 ± 0.283, 初期浸潤癌が 0.985 ± 0.513, 浸潤癌が 0.790 ± 0.344 であった. 非浸潤癌と初期浸潤癌 (p=0.0021), 非浸潤癌 と浸潤癌 (p=0.0468) との間で有意差を認めた. DWI/SC

群馬県立がんセンター¹呼吸器外科,²放射線診断部,³呼吸器内 科,⁴病理部;⁵杏林大学医学部外科学教室.

別刷請求先:田中良太,群馬県立がんセンター呼吸器外科,

^{〒373-8550} 群馬県太田市高林西町 617-1 (e-mail: ryotaseason2009 @yahoo.co.jp).

受付日:2008年7月18日,採択日:2008年10月23日.

比は比較的に ROC 曲線が左肩上がりの傾向を示し,よ り安定的な結果となった. 結論. 肺野末梢型の小型肺腺 癌に対する高b 値拡散強調画像は病変の悪性度(浸潤 度)を見極めるのに有用であり,そして近い将来縮小手

はじめに

近年,画像診断領域では空間分解能が非常に優れた多 列検出型 computed tomography (以下 CT と略す) 装置 が登場し、また一般病院でもCT装置が広く普及し、日常 臨床の場で小型肺野病変に多く遭遇する. そして, CT の画像所見で限局性のすりガラス状陰影 (ground-glass opacity:以下 GGO と略す)として描出される病巣が発 見されており、それらの病巣の中には病理学的に Noguchi 分類¹の Type A, もしくは Type B に代表され る極めて予後良好な細気管支肺胞上皮癌が含まれてい る. しかしながら, CT 装置を用いた画像解析のみでは正 診率が低く、例えば経過観察期間や縮小手術の適応など の治療方針を決定するには未だ十分であるとはいえな い. 現在, 当センターでは多診療領域にわたりさらなる 画像解析を用いた質的診断の向上を目指して magnetic resonance imaging (以下 MRI と略す)を利用している. 以前,我々は本学会雑誌の第46巻第3号に,肺野末梢病 変に対する良悪の鑑別に MRI による画像解析が有用で あることを報告した.2 その後,第47巻第1号に,末梢型 肺腺癌に対する病変の質的な評価に MRI の画像解析が 有用であることを報告した.3 それらの結果を踏まえ, 今 回我々は肺野末梢型の小型肺腺癌を対象として、MRI 拡散強調画像の画像解析と切除標本の病理学的な所見と を対比することで retrospective にその有用性を検討し た. またさらに MRI 拡散強調画像と多列検出型(16列) CT 装置による CT 画像からえられた画像解析データを

 Table 1.
 Patient Characteristics

Characteristics				
Number of patients	38			
Sex (male/female)	21/17			
Mean age (range)	66.7 y (54-81 y)			
Side (left/right)	12/26			
Mean size (range)	14.3 mm (6-20 mm)			
Histology				
Type A+B	12			
Туре С	21			
Type D+E	5			

y, years old.

術の適応など治療方針の決定に関わる付加的な情報を提 供するものと思われる.

索引用語 —— 拡散強調画像, DWI, 核磁気共鳴検査, 肺 癌, 腺癌

比較して、その有用性を検証した.

対象と方法

2005年5月から2007年12月までに当センター呼吸 器外科において手術を施行した原発性肺癌 135 例のう ち,125 症例に対して術前に胸部 MRI 検査を行ってい た. そのうち肺野末梢型病変であり、かつ切除後の病理 学的な最大腫瘍長径が2cm以下の小型肺腺癌38例を 対象として検討した. Noguchi 分類の内訳は Type A が 5例、Type Bが7例、Type Cが21例、Type Dが3 例, Type E が2 例であった. 対象症例の患者背景因子を Table1にまとめた.対象症例をときに生物学的な悪性 度の違いから、Noguchi 分類の Type A と Type B を非 浸潤癌として一群(n=12, 図表では Type A+B と略す) に、Type C を初期浸潤癌 (n=21)、Type D と Type E を一群にまとめて浸潤癌(n=5,図表ではTypeD+E と略す)と定義して比較し検討した.45 また. すべての対 象症例に対して多列検出型(16列)CT装置による画像解 析を施行しており、18 例が充実性陰影(いわゆる solid). 14 例が一部に GGO を伴う充実性陰影(いわゆる mixed GGO),そして6例がGGOのみを呈する陰影(いわゆる pure GGO)であった. 使用したMRI装置は total imaging matrix(TIM)を搭載した SIEMENS 社製 MAGNETOM

Table 2. Imaging Parameters of DWI

Parameters	
Type of scan	Respiratory triggered
Fat suppression	CHESS
TR (msec)	2900-3900
TE (msec)	60-70
FOV (mm)	450
Matrix	$128\!\times\!128~(\!256\!\times\!256~(\mathrm{I})$)
b factor	1000
Number of slice	30
Slice thickness (mm)	8
Slice gap (mm)	0
NEX (times)	6

DWI, Diffusion weighted imaging; CHESS, Chemical shift selective; TR, Repetition time; TE, Echo time; FOV, Field of view; I, Interpolation; NEX, Number of excitations.

Figure 1. Fusion images are made by sources of T1-weighted imaging (T1WI) and diffusion weighted imaging (DWI).

Figure 2. DWI image demonstrates a high intensity nodule and the spinal cord (*SC*) with region of interest (ROI) markers. The signal intensities of the lesion (*DWI*) and the *SC* were analyzed in the ROIs, and the *DWI/SC* ratio was calculated with the value of *DWI* divided by the value of *SC*.

Avanto 1.5T である. 撮影シーケンスは short TI inversion recovery (以下 STIR と略す)法 (4500/170/45), chemical shift selective (CHESS) 法を併用した呼吸同期 下高b値拡散強調画像(2900~3900/63, b=1000),およ びダイナミックスタディー (3/1.1/15°)である. 今回は拡 散強調画像(diffusion weighted imaging:以下 DWIと 略す)のみを解析の対象とし、撮影条件の詳細は Table 2に示した. DWIの異常信号部位の位置情報は、コント ラストをカラー表示した画像と同時に撮影した脂肪抑制 T1 強調画像をフュージョンさせることからえられた (Figure 1). DWI の信号強度に関する実際の画像解析 は、株式会社スリーゼットより販売され国内でも汎用性 が高い画像解析ソフト d-View II を使用した.具体的な 信号強度の測定方法は通常の axial 画像の画面上に描出 された病巣部と脊髄部(病巣部と同一スライス)の、そ れぞれにおける関心領域 (region of interest: ROI) を設 定して信号強度の平均値を測定し(Figure 2),そして病 巣部の信号強度値 (DWI 値) を脊髄部の信号強度値 (SC 値)で割ることでえられた比率(DWI値/SC値:以後 DWI/SC 比と定義する)を各浸潤度別にまとめて算出し、 統計学的に解析し比較して検討した. また実際にえられ た病巣部の DWI 画像にしばしば信号むら(不均一な信 号強度のパターン)がみられたことより (Fig-

Figure 3. A 58-year-old man with advanced BAC (Type C on Noguchi's classification) in the right upper lobe. (A) Thin-section CT demonstrates a solitary nodule with air bronchogram. (B) Enhanced CT demonstrates the same lesion with a solid pattern. (C) DWI demonstrates a high-intensity nodule with a heterogeneous pattern. (D) The lesion in the DWI image was displayed as a 3-dimensional image by *Image I* software.

ure 3A~3C), NIH (National Institutes of Health) Image (http://rsb.info.nih.gov/nih-image/)からダウンロード したフリーソフト Image Jを用いて対象症例における病 巣部の信号パターンも同時に解析した(Figure 3D).具 体的な信号パターンの解析方法は、まず通常の axial 画 像で描出された病巣部を画面上で切り出し,信号強度(輝 度)を高さになぞらえて表示した線グラフ(surface plot) の形状により5種類のパターンに分類した(Figure 4). 判定の方法は放射線科診断医師2名による合議制を採用 し、各浸潤度別にまとめ、比較して検討した.さらに d-View II を用いて CT 画像上の肺野条件(level, -600 HU; width, 1600 HU)における病巣検出部の CT 値(平 均値),また縦隔条件(level, 40 HU; width, 400 HU)で の最大腫瘍長径を肺野条件での最大腫瘍長径で割ること でえられた比率(縦隔条件/肺野条件×100(%);以後 SOLID 比と定義する)を算出し、DWI/SC比の解析デー タと併せ ROC (receiver operating characteristic)曲線を 作成し、比較して検討した.なお非浸潤癌を浸潤陰性 (n=12)、そして初期浸潤癌と浸潤癌を浸潤陽性(n=26) と定義して統計学的に解析した.CT 値は放射線科診断 医師 1 名により肺野条件で視認できる病巣範囲に ROI を設定し、えられた数値の平均値をもとに解析した.使 用した CT 装置は 16 列の検出器を搭載した SIEMENS 社製 Sensation 16 で、コリメーション 0.75、管電圧 120 kV、管電流 120 mAs,スキャン時間 0.5 秒/1 回転で撮影 し、スライス厚 1.0 mm の条件で再構成した.すべての統 計学的な解析 は Dr. SPSS II for Windows を使用 して 行った.具体的な解析手法は二群間の比較で χ^2 検定、 DWI/SC比の測定データの群間比較で t 検定を用いて、 p<0.05 をもって有意差ありと判定した.各種解析によっ

Figure 4. Three-dimensional images were visually classified as the five patterns by signal formations.

てえられた数値(p値と頻度確率以外)は小数点以下第 4位で四捨五入したものを本文中に示した.また ROC 曲線は同様のアプリケーションを用いて作成し統計学的 に解析した.

結 果

全対象症例における DWI/SC 比は平均値が 0.788± 0.489 (mean±SD)で、中央値が 0.740 であった。各浸潤 度別の DWI/SC 比は非浸潤癌の平均値が 0.444±0.283 で、中央値が 0.313、初期浸潤癌の平均値が 0.985±0.513 で、中央値が 0.819、浸潤癌の平均値が 0.790±0.344 で、 中央値が 0.642 であった。非浸潤癌と初期浸潤癌 (p= 0.0021)、非浸潤癌と浸潤癌 (p=0.0468) との間で有意差 を認めた (Figure 5). また初期浸潤癌と浸潤癌との間で

Figure 5. Box and whisker plots of *DWI/SC* ratio obtained in histological subtypes of lung adenocarcinoma. *DWI/SC* ratio of BAC group was significantly lower than those of advanced BAC and non-BAC groups (p < 0.05 for both).

有意差を認めなかった (p=0.4302). DWI の信号パター ンの解析では全体として無信号型(No signal type)が8 例 (21.1%), ドーム型 (Dome type) が 16 例 (42.1%), リング型 (Ring type) が7例 (18.4%), 単峰型 (Single peak type)が4例(10.5%),多峰型(Multiple peaks type) が3例(7.9%)であった.浸潤度別には無信号型が非浸 潤癌で12例中8例(66.7%)であったが、初期浸潤癌、 浸潤癌では1例にも認めなかった(Table 3). 初期浸潤癌 と浸潤癌ではドーム型が比較的に多くみられた(それぞ れ 52.4%, 60%). また初期浸潤癌ではリング型が、浸潤 癌では多峰型が比較的に多く認められた (それぞれ 28.6%, 40%). 非浸潤癌と初期浸潤癌(p=0.0009), 非浸 潤癌と浸潤癌 (p=0.0242) との間で有意差を認めた. CT の画像解析によりえられた CT 値および SOLID 比, そし て MRI 拡散強調画像によりえられた DWI/SC 比の解析 データから作成した ROC 曲線を Figure 6 に示した.漸 近95% 信頼区間においていずれの解析手法も0.5より も大きい有意水準を満たしていた.曲線下面積はCT 値 が 0.875 ± 0.061, SOLID 比 が 0.841 ± 0.081, DWI/SC 比 が 0.843±0.075 で CT 値が最も高かった. しかしながら, CT 値は測定時の ROI の設定範囲によって極端な値の変 動を示したため(主に含気部の空気の影響),あくまでも 参考値として解釈するべきである.またCT値はROC 曲線がより直線的で比較的にカットオフ値の設定が難し いことが伺えた. SOLID 比は浸潤陰性と浸潤陽性の両者 に同一値を部分的に含んだため統計量に偏りが生じ, ROC 曲線が斜め直線の部分を含んだものとなった. ROC

Table 3. Subtypes of DWI Patterns in Small-sized Adenocarcinoma

Group -	Туре							
	No signal	Dome	Ring	Single peak	Multiple peaks	p value		
Type A+B	8 (66.7%)	2 (16.7%)	1 (8.3%)	1 (8.3%)	0		p=0.0242	
Type C	0	11 (52.4%)	6 (28.6%)	3 (14.3%)	1 (4.8%)	p=0.0009		
Type D+E	0	3 (60%)	0	0	2 (40%)	(Type A+b vs. C)	(Type A+D vs. D+E)	

Figure 6. The ROC curve of the three analyses.

曲線をもとにカットオフ値を, CT 値が-208.76, SOLID 比が 52%, DWI/SC 比が 0.634 と設定すると, sensitivity がそれぞれ 92.3%, 76.9%, 84.6%, specificity がそれぞ れ 75%, 83.3%, 83.3% であった. DWI/SC 比は ROC 曲線が比較的により左肩上がりの傾向を示し, より安定 的な結果となった.

考察

近年,胸部の画像診断領域ではmultidetector CT (MDCT)の登場により極めて微小な肺野病変の検出や 高解像度の放射線学的な構造解析が可能となった.そし てCTや MRI などの画像解析による形態学的な診断に 加え,positron emission tomography (PET)などの臨床 応用によりさらなる病変の質的診断が求められている. 以前,我々は本学会雑誌の第47巻第1号に原発性肺癌の 主病巣評価における MRI 診断の有用性について報告し た.³その中で3cm 以下の腺癌 27 例を対象として,視覚 的な判定基準による DWI が score 4,もしくはダイナ ミックスタディーで急峻な立ち上がりを示す病変(急峻 型と定義)を浸潤陽性と判定すると sensitivity が 94.4%, specificity が 66.6%, accuracy が 85.2% と報告し た.そして末梢型肺腺癌に対する MRI 画像は病変の質的 診断に有用であり、とりわけ高b値拡散強調画像は病変

の悪性度(浸潤度)を見極めるのに有用であると述べた. そもそも拡散強調画像は超急性期の脳梗塞の診断に臨床 応用され.6 水分子のブラウン運動を反映していると考 えられている.7 実際にえられる画像は細胞内外での水 分子の拡散の程度を画像化したものである. 拡散強調画 像で異常信号を呈するのは拡散能が低下している場合 で、例えば細胞性浮腫、粘稠な液体、出血、腫瘍などが 原因として挙げられる。また、どの程度に拡散が強調さ れているかを示す値をb値(bfactor)といい、b値を高 く設定することで躯幹部では悪性病変を高感度に検出で きると考えられている.8 今回, 我々は DWI の信号強度 と信号パターンが病理学的(質的)な情報、特に肺腺癌 の悪性度(浸潤度)を反映していることを客観的な解析 データにより証明しえた. しかしながら、今回我々が拡 散強調画像の信号強度の指標として用いた DWI/SC 比 は浸潤癌よりも初期浸潤癌において平均値が上回る結果 となった.本対象症例の Type C(本研究で初期浸潤癌と 定義した)の中にDWI/SC比の数値が2を上回る症例は 2 例あり(浸潤癌における最高値は 1.372), それらは他肺 葉内に肺内転移を伴う病理病期が IV 期の症例や、病理 学的に真の乳頭状増殖を模倣する比較的に構造異型の目 立つ症例が存在した.本研究は病理学的な悪性度(浸潤 度)の指標として Noguchi 分類を用いたが、今後は臨床 病理学的な他の悪性度の指標となりうる因子も含めた検 討が必要であると考えている.

MRIの撮影において肺はプロトン濃度が低く,また呼吸運動や心拍動などの生理的な現象による motion artifact を受けやすく不利な点が多く存在する.しかしなが ら,今日までに MRI の性能が著しく向上していることを 背景に,高速撮影法の進歩や,生理的な動きに対する同 期法(呼吸同期,心電図同期)の併用により MRI の撮影 技術も進化してきた.肺野末梢型病変に対する MRI 診断 の有用性はダイナミックスタディーを中心としていくつ か報告されている.⁹¹³ 我々は過去に簡便で視覚的な判 定基準を用いて拡散強調画像,STIR 画像,およびダイナ ミックスタディーの画像解析により,肺野末梢型病変の 良悪の鑑別や肺腺癌の悪性度(浸潤度)を比較的に良好 な精度をもって見極めることが可能であることを報告し た.^{23,14} 胸部領域での拡散強調画像に関する報告は今ま でのところ数編の論文がみられる程度である. Matoba ら¹⁵は肺癌患者 30 例を対象に SPLICE (spin-echo signals for diffusion imaging) シーケンスを用いて,主病巣 の ADC (apparent diffusion coefficient) 値を測定し定量 的に組織型の推定が可能かどうかを検討した. そして高 分化腺癌 (BAC を除く) とその他組織型との間に有意差 を認め, 腺癌での ADC 値は腫瘍細胞密度の相違により 細胞分化の程度を鑑別するパラメーターとして有用であ る可能性を示唆した. しかしながら,本研究とは異なり GGO を 50% 以上含む病変は対象から除外されている.

一般的に ADC 値は異なる b 値の拡散強調画像から ADC map を作成し算出するのが主な方法である. そし て、頭頚部、骨盤部などの呼吸移動の影響が少ない領域 における病変部での ADC 値の算出は可能である.しか し本研究での撮影技法のような自由呼吸下の呼吸同期に よる撮影では、1 cm 程度の主病巣の ADC 値の算出は困 難であり、施設間のデータ差も大きいことから、現段階 では ADC 値の過大評価はつつしむべきであると考え る.14 本研究では病巣部の信号強度を脊髄部の信号強度 で割ることでえられた比率(DWI/SC比)を用いて検討 した.この解析手法は健常人の脊髄での拡散係数 (ADC 値)と信号強度が比較的に安定的な値を示すという報告 を引用して考案した.¹⁶⁻¹⁸ 現時点で DWI/SC 比は拡散強 調画像の施設間での撮影技法の差を考慮した妥当な解析 手法であると考えている.しかしながら、本手法により えられる解析データは信号強度の平均値であるがゆえ, 値のバラツキや測定時の誤差が生じる危険性がある. 今 後このような問題に対して複数人の解析結果を評価する 検証実験や、信号強度の平均値ではなく最大値で検討す ることも考慮している.

過去に肺野末梢型肺腺癌を対象とした画像解析は, CT を中心として多くの報告をみる. 主に GGO の面積比率 (縮小率など)による解析で,GGOの面積比率が比較的に 高い症例では病理学的な浸潤傾向が乏しく、予後が良好 であると報告されている.¹⁹⁻²² しかしながら, CT 画像上 充実性陰影を主体とした病変の中にも Noguchi 分類の Type Aや Type Bが存在するとの報告があり、本研究 でも非浸潤癌12例中2例はSOLID比が100%の病変 であった. 例えば, 代表的な例として粘液産生を伴う低 悪性度の goblet cell 型の腺癌はときに CT 画像上充実性 陰影を呈することが知られている. ここ最近になり積極 的な縮小手術に取り組む施設も増えており、23.24 縮小手 術の適応を拡大するためには患者に不利益を与えない、 より診断精度の高いモダリティーが必要とされている. CT による画像解析が難しいとされる充実性陰影に対し ても, MRI は画像形態学的な診断を補完する質的な情報 を与えるモダリティーとして有用であると考えてい る.¹⁴ そして近い将来, MRI 診断は日常臨床の場におい て肺野末梢型病変の良悪の鑑別や経過観察期間, また縮 小手術の適応などの治療方針の決定に関わる付加的な情 報を提供するものと思われる.

結 語

肺野末梢型の小型肺腺癌に対する高b値拡散強調画 像は病変の悪性度(浸潤度)を見極めるのに有用である と思われる.現在,我々はさらにMRIの画像所見が具体 的にどのような質的な情報を反映するものであるかを検 証するため,分子生物学的なアプローチを加えて検討し ている.

本研究は平成19年度群馬県病院局総合研究の「肺野末梢型 肺腺癌における MRIを用いた質的な画像解析の有用性に関 する検討」の研究費から支援を受けた.

REFERENCES -

- Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. *Cancer*. 1995;75:2844-2852.
- 田中良太, 堀越浩幸, 中里宜正, 吉野麗子, 飯島美砂, 呉 屋朝幸, 他. 肺野末梢型病変に対する MRI 診断の有用性. 肺癌. 2006;46:199-205.
- 3. 田中良太, 堀越浩幸, 中里宜正, 吉野麗子, 飯島美砂, 呉 屋朝幸, 他. 原発性肺癌における MRI 診断の有用性—主 病巣の病理組織像との対比を中心に—. 肺癌. 2007;47:13-20.
- Tanaka R, Wang D, Morishita Y, Inadome Y, Minami Y, Iijima T, et al. Loss of function of p16 gene and prognosis of pulmonary adenocarcinoma. *Cancer*. 2005;103:608-615.
- Tanaka R, Ishiyama T, Uchihara T, Inadome Y, Iijima T, Morishita Y, et al. Expression of the Bax inhibitor-1 gene in pulmonary adenocarcinoma. *Cancer*. 2006;106:648-653.
- Warach S, Boska M, Welch KM. Pitfalls and potential of clinical diffusion-weighted MR imaging in acute stroke. *Stroke*. 1997;28:481-482.
- Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. *Radiology*. 1988;168:497-505.
- Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. *Radiat Med.* 2004;22:275-282.
- Ohno Y, Hatabu H, Takenaka D, Adachi S, Kono M, Sugimura K. Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. *Radiology*. 2002;224:503-511.
- 10. Ohno Y, Sugimura K, Hatabu H. MR imaging of lung cancer. *Eur J Radiol.* 2002;44:172-181.
- 11. Ohno Y, Hatabu H, Takenaka D, Uematsu H, Ohbayashi

C, Higashino T, et al. Dynamic MR imaging: value of differentiating subtypes of peripheral small adenocarcinoma of the lung. *Eur J Radiol.* 2004;52:144-150.

- Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, et al. Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging--perfusion differences in malignant and benign lesions. *Radiology*. 2004; 232:544-553.
- Tozaki M, Ichiba N, Fukuda K. Dynamic magnetic resonance imaging of solitary pulmonary nodules: utility of kinetic patterns in differential diagnosis. *J Comput Assist Tomogr.* 2005;29:13-19.
- 14. Tanaka R, Horikoshi H, Nakazato Y, Seki E, Minato K, Iijima M, et al. Magnetic resonance imaging in peripheral lung adenocarcinoma: correlation with histopathologic features. *J Thorac Imaging*. 2009;24:4-9.
- Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, et al. Lung carcinoma: diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. *Radiology*. 2007;243:570-577.
- Holder CA, Muthupillai R, Mukundan S Jr, Eastwood JD, Hudgins PA. Diffusion-weighted MR imaging of the normal human spinal cord in vivo. *AJNR Am J Neuroradiol.* 2000;21:1799-1806.
- Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. *Radiology*. 2001;220:621-630.
- Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: find-

ings in normal subjects and in myelomalacia. *Neuroradiology*. 2003;45:90-94.

- 山田耕三. 径 20 mm 以下の肺野型肺癌の CT 診断一画像 所見と病理所見および予後との比較一. 肺癌. 2006;46:7-14.
- Takashima S, Maruyama Y, Hasegawa M, Yamanda T, Honda T, Kadoya M, et al. Prognostic significance of high-resolution CT findings in small peripheral adenocarcinoma of the lung: a retrospective study on 64 patients. *Lung Cancer.* 2002;36:289-295.
- Matsuguma H, Yokoi K, Anraku M, Kondo T, Kamiyama Y, Mori K, et al. Proportion of ground-glass opacity on high-resolution computed tomography in clinical T1 N0 M0 adenocarcinoma of the lung: A predictor of lymph node metastasis. *J Thorac Cardiovasc Surg.* 2002;124:278-284.
- 22. Matsuguma H, Nakahara R, Anraku M, Kondo T, Tsuura Y, Kamiyama Y, et al. Objective definition and measurement method of ground-glass opacity for planning limited resection in patients with clinical stage IA adenocarcinoma of the lung. *Eur J Cardiothorac Surg.* 2004; 25:1102-1106.
- Nakata M, Sawada S, Saeki H, Takashima S, Mogami H, Teramoto N, et al. Prospective study of thoracoscopic limited resection for ground-glass opacity selected by computed tomography. *Ann Thorac Surg.* 2003;75:1601-1606.
- 24. 土田正則, 青木 正, 橋本毅久, 篠原博彦, 斎藤正幸, 岡 田 英, 他. 画像上すりガラス状陰影を呈した末梢型小型 肺癌に対する縮小手術. 胸部外科. 2004;57:38-43.