肺癌患者におけるEGFR遺伝子変異検査の手引き

第1.0版 2009年 3月 6日
第1.7版 2009年 5月11日
第2.0版 2014年 2月11日
第2.1版 2014年 4月14日
第3.0版 2016年11月 2日
第3.05版 2016年12月 1日
第4.0版 2018年11月21日
第4.1版 2019年 1月30日
第4.2版 2019年 3月 6日

日本肺癌学会
バイオマーカー委員会

西野和美, 西尾和人, 畑中 豊, 池田貞勝, 菓子井達彦, 木村英晴, 後藤功一
阪本智宏, 里内美弥子, 清水淳市, 曽田 学, 畑 幸治, 豊岡伸一, 松本慎吾

三窪将史, 谷田部 慶, 横瀬智之, 秋田弘俊
III. EGFR遺伝子変異検査

10. EGFR遺伝子変異検査の対象患者

11. EGFR遺伝子変異検査に用いる検査法

11-1. 組織検査

11-1-1. EGFR-TKI投与前の初回検査

11-1-2. EGFR-TKI治療耐性後の二次的T790M変異検査

11-2. 血漿検査（リキッドバイオプシー検査）

11-2-1. EGFR-TKI投与前の初回検査

11-2-2. EGFR-TKI治療耐性後の二次的T790M変異検査

11-2. 血漿検体

12. 対象となる検体とその適正性について

12-1. 組織・細胞検体

12-1-1. FFPE組織検体

12-1-2. FFPE細胞検体（セルブロック検体）

12-1-3. 細胞検体

12-1-4. 新鮮凍結検体

12-2. 血漿検体

13. 薬事承認および保険診療の観点からみた本検査のあり方

13-1. T790M血漿検査の検査回数について

13-2. 同一月中のT790M血漿検査・組織検査の実施について

参考文献

付録

付1）主なEGFR変異の検出法の解説

第4.2版の改訂点
第4版の序

この度、「肺癌患者におけるEGFR遺伝子変異検査の手引き」第4版が公開の運びとなった。第1版が2009年に作成された後、第2版は5年後の2014年4月に、第3版は2016年10月に公開された。今回は第3版からは2年あまりと最近のエビデンスの急速な蓄積を反映して最短間隔での改訂となった。

EGFR遺伝子は肺癌における最初のドライバー遺伝子として肺癌診療に大きなパラダイムシフトをもたらした。EGFR遺伝子変異は日本人の肺腺癌の約半数にみられるという点、日本人研究者が遺伝子検査を行って治療選択する、いわゆる今で言うところのprecision medicineの確立に大きな寄与をしたことなど、殊更われわれには感慨深い遺伝子である。

前回改訂以後の大きなEGFR肺癌研究における進歩はオシメルチニブあるいはダコミチニブが第一世代薬に比して生存期間の延長をもたらしたこと、リキッドバイオプシーの保険償還などがある。とくにオシメルチニブは中枢神経変性の有効性や毒性についても優れた点を有し、今後の第一選択薬としての大きな可能性を秘めている。また、2018年末現在、EGFR、ALK、ROS1、BRAFへの薬物が保険償還され、該当する患者に大きなベネフィットをもたらしている。このためこれらを遅滞なく診断することが重要であり、EGFR遺伝子変異検査をふくめてNGSパネル検査の臨床応用に期待があつっている。

本手引きはEGFR遺伝子変異検査とEGFRチロシンキナーゼ阻害薬について、客観的網羅的にまとめられ、診療のガイドとしてのみでなく、この分野の総説としても卓越した読み物となっていると信じる。本手引きが肺癌診療ガイドラインと共に臨床現場における適正な診断治療提供の一助となることを祈念する。

末筆ながら忙しい日常業務の傍ら、本手引きの作成にご尽力いただいた秋田弘俊委員長初め日本肺癌学会バイオマーカー委員の諸氏には深甚なる敬意と感謝の意を表明したい。

2018年11月吉日
日本肺癌学会理事長

光冨徹哉

第4版執筆者

西野和美、西尾和人、畑中豊、池田貞勝、栗枝井達彦、木村英晴、後藤功一、阪本智宏、里内美弥子、清水淳市、曽田学、豊岡伸一、松本慎吾、三窪将史、谷田部恭、横瀬智之、秋田弘俊
第3版の序

この度、「肺癌患者におけるEGFR遺伝子変異検査の手引き」第3版が公開の運びとなった。第1版が2009年に作成された後、第2版は5年後の2014年4月に公開された。今回は2版からは2年半しか経ていないが、この分野の急速な進歩を反映しての改訂である。

EGFR遺伝子は肺癌における最初のドライバー遺伝子として肺癌診療に大きなパラダイムシフトをもたらした。EGFR遺伝子変異は日本人の肺腺癌の約半数にみられるという点、日本人研究者が遺伝子検査を行って治療選択する、いわゆる今で言うところのprecision medicineの確立に大きな寄与をしたことなど、特にわれわれには感慨深い遺伝子である。

前回改訂以後の大きなEGFR肺癌研究におけるブレークスルーは、ベバシズマブの併用によるエルロチニブの無増悪生存期間（PFS）の大幅な延長、第二世代薬アファチニブがcommon EGFR mutationを有する症例でプラチナニン剤療法に対して初めて全生存期間（OS）の延長を示したこと、第三世代薬オシメルチニブの開発等があげられよう。特にオシメルチニブは第一世代EGFR-TKIにT790M二次変異で耐性となった症例に対して、ファーストライオンの第一世代EGFR-TKIと同等の奏効率、PFSを示している。この薬剤を有効に使うためには耐性後の組織からこのT790M変異を効率よく見出すことが重要であることはいうまでもない。これらの進歩によって21世紀当初には1年をやや超える程度であったIV期非小細胞肺癌の生存期間は、EGFR肺癌については3年を超え四年に及ぼすとされている。2015年の暮れには免疫チェックポイント阻害剤が肺癌に承認され、今後しばらく肺癌診療体系はさらに劇的に変貌をとげ患者予後の一層の改善が期待されている。

本手引きはEGFR遺伝子検査とEGFRチロシンキナーゼ阻害剤について、その歴史的事実から最新の知見までを客観的網羅的にまとめられ、診療のガイドとしてのみでなくこの分野の総説としても卓越した読み物となっている。

高度に複雑化し日進月歩をとげている肺癌診療を完璧に理解し患者さんに最大の利益をもたらす治療を実践し続けることは容易ではない。本手引きが肺癌診療ガイドラインと共に臨床現場における適正な診断治療の一助となることを祈念する。

末筆ながら忙しい日常業務の傍ら、本手引きの作成にご尽力いただいた秋田弘俊委員長始め日本肺癌学会バイオマーカー委員の諸氏には深甚なる敬意と感謝の意を表明したい。

2016年10月吉日
日本肺癌学会理事長
光冨徹哉

第3版執筆者
西野 和美、西尾 和人、畑中 豊、井上 彰、後藤 功一、里内美弥子、曾田 学、豊岡 伸一、萩原 弘一、谷田部 恭、秋田 弘俊
第2版の序

この度、「肺癌患者における EGFR 遺伝子変異検査の手引き」第2版を公開することとなった。2009年5月に第1.7版が出されて以来、5年ぶりの改訂となる。この5年間に ALK 融合蛋白をはじめとして多くの driver oncogene が発見され、これらに対する阻害薬の開発が進んでおり、肺癌のバイオマーカーと分子標的治療研究は常に興奮に満ちている。にもかかわらず、EGFR 遺伝子変異は肺癌研究の中心にあり続け、これに対する TKI は肺癌分子標的治療の主役としての位置にあり続けている。アジア人における本遺伝子の変異頻度の多さが要因の一つである。さらに EGFR-TKI はいったん奏効しても高頻度に耐性化すること、その結果耐性機序に関する研究が進捗したこと、解明された耐性機序がきわめて多岐に及ぶこと、さらに耐性を克服する治療法と治療薬が活発に開発されていること等が大きく影響している。まさに EGFR 遺伝子変異研究は、学術的にも臨床的にも多くの新知見を生み出し、かつ肺腫瘍学の奥深さを具現している。

本手引きにおいては、肺癌学会の肺癌診療ガイドラインとの整合性をとりつつ実診療において本検査を実施するに際しての適応、検体の取扱、保険診療における注意点とコスト、結果の解釈など具体的な内容を示し、適正かつわかりやすい手引きとなっている。第1版よりこの作成を立案主導してきた光冨徹哉理事と第2版作成に関わったバイオマーカー委員の諸氏に敬意を表すると共に、本手引きが診療ガイドラインならびに臨床現場における適正な診断治療提供の一助となることを祈念する。

2014年3月28日

日本肺癌学会理事長

中西洋一

第2版執筆者

光冨徹哉、萩原弘一、谷田部恭、浦本秀隆、井上彰、曽田学、後藤功一、西尾和人、秋田弘俊
上皮成長因子受容体(EGFR: Epidermal Growth Factor Receptor)は膜貫通型受容体チロシンキナーゼであり、このチロシンキナーゼ領域の活性化すなわちリン酸化ががんの増殖、進展に関わるシグナル伝達に重要であると認識されている。このような観点から EGFR は癌治療の分子標的として注目され、EGFR チロシンキナーゼ阻害薬(EGFR-TKI)や抗 EGFR 抗体が開発された。

わが国においても EGFR-TKI の 1 つであるゲフィチニブが 2002 年 7 月、世界に先駆けて承認され、2007 年 10 月には同種同効のエルロチニブも認可されている。2009 年 4 月現在まで EGFR-TKI 製剤は 8 万 5 千人を超える非小細胞肺癌患者の治療に使われている。腺癌、非喫煙者を中心に劇的な効果を示す例も経験される中、科学的な効果予測因子として EGFR 遺伝子変異が最も重要な因子であると、少なくとも日本を含めたアジアでは認識されている。この様な背景から 2007 年 6 月に EGFR 遺伝子変異検査は保険収載されたものの本検査の実際について解説したものはなかった。

2009 年 2 月 26 日の日本肺癌学会理事会において、光冨徹哉理事より「肺癌患者における EGFR 遺伝子変異検査の解説」の作成が提案され、承認後、僅か 1 ヶ月余で本解説が完成した。これも光冨理事はじめ 7 名の EGFR 解説作成委員の労に負うこと大であり、深甚の敬意と謝意を捧げたい。なお本書は EGFR 遺伝子変異検査の解説にとどまらず、EGFR-TKI の臨床試験の結果や基礎的な最新の知見等の解説も含まれており、肺癌治療医のみならず多くの医療関係者に裨益することを期待している。

2009年 5月

日本肺癌学会理事長
一瀬幸人

初版執筆者

光冨徹哉、谷田部恭、萩原弘一、弦間昭彦、西尾和人、秋田弘俊、中川和彦
要約

説明

EGFR 遺伝子変異検査の適応

 EGFR-TKI 投与前の初回検査
- 薬物療法を考慮している肺癌患者
- 少なくとも一部は腺癌成分のある扁平上皮癌、小細胞肺癌も適応。少量の生検標本では腺癌成分がないことを否定することは難しいので検査の適応となる。
- 性別、喫煙歴、人種などで検査不適応を決めない。

 EGFR-TKI 治療耐性後の二次的 T790M 変異検査
- EGFR-TKI 耐性となった肺癌患者

使用する検体

 EGFR-TKI 投与前の初回検査
- ホルマリン固定パラフィン包埋組織（FFPE）検体の使用が推奨される。
- 胸水などの細胞検体は、体外診断用医薬品を用いた方法（IVD法）では対象に含まれないが、運用上、検査に用いられている。
- 新鮮凍結検体は上記の使用が困難な場合に使用を検討する。
- いずれの場合も十分な量と割合で腫瘍細胞が存在していることを確認することが必須である。

 EGFR-TKI 治療耐性後の二次的 T790M 変異検査
- 再生検された組織検体および細胞検体での検査が可能な場合は、これら検体の使用が強く推奨される。
- 再生検が不成功となった場合もしくは困難と判断される場合にのみ、血漿検体の使用を検討する。

検出方法

<table>
<thead>
<tr>
<th>検査の タイミング</th>
<th>本邦で承認されている EGFR-TKI</th>
<th>IVD法</th>
<th>非IVD法</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>本邦で承認されている EGFR-TKI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR-TKI投与前の 初回検査</td>
<td>ゲフィチニブエルロチニブアファチニブ</td>
<td>〇〇〇〇</td>
<td>〇〇〇</td>
</tr>
<tr>
<td></td>
<td>サマツランチニブ目的な検査</td>
<td>〇〇〇〇</td>
<td>〇〇〇</td>
</tr>
<tr>
<td>EGFR-TKI治療耐性後の T790M変異検査</td>
<td>オシメルチニブ</td>
<td>〇〇〇〇</td>
<td>〇〇〇</td>
</tr>
</tbody>
</table>

検出方法

・ EGFR-TKI 投与前の初回検査および EGFR-TKI 治療耐性後の二次的 T790M 変異検査で使用可能な検出法は以下の通りである。

※1. 遺伝子関連検査の質保証体制（http://www.jrcla.or.jp/info/info/250726.pdf参照）が十分に整備され、また検査に係る特許等に対する実施許諾（ライセンシング）等の対応がなされている場合には、非IVD法の使用は可能である。具体的には、国内の主要検査センターで実施され、米国 CLIA ラボの LDT 法に相当すると判断される検査法はこれに該当する。

※2. D004-2 悪性腫瘍組織検査1悪性腫瘍遺伝子検査 イ EGFR 遺伝子検査（リアルタイム PCR 法）2,500点、ロ EGFR 遺伝子検査（リアルタイム PCR 法以外）2,100点が適用される。IVD 法は、「イ」を、非IVD 法は、「ロ」を適用する。

※3. D006-12 EGFR 遺伝子検査（血漿）2,100点
検出対象となる変異

臨床的意義が明らかとなっている以下の変異タイプは、EGFR 変異検査の検出対象とすべきである。

①活性型変異であることが既知のもの
・エクソン 19 欠失変異、L858R 変異（最も良い適応）
・G719X 変異、L861Q 変異、S768I 変異（薬剤により感受性が異なる）

②抵抗性変異であることが既知のもの
・T790M 変異（二次的の場合は第三世代 EGFR-TKI の適応）
・エクソン 20 挿入変異

すべての EGFR 変異が、EGFR-TKI の効果を予測するものではない。意義不明の変異は多数あるが、その頻度はまれである。

EGFR-TKI の使用

肺癌診療ガイドラインを参考にする。
はじめに

上皮成長因子受容体（EGFR）特異的なチロシンキナーゼ阻害薬（TKI）であるゲフィチニブ（イレッサ®）が本邦において 2002年7月に承認され、化学療法の不応例においてもしばしば劇的な臨床症状および画像上の改善をもたらしてきた。2004年春にEGFR遺伝子変異（以下EGFR変異）のある非小細胞肺癌（NSCLC）においてゲフィチニブの感受性が高いことが発見され、これを機にEGFR-TKIの研究はおおいに加速することとなった。

一方、EGFR-TKIはEGFR変異陽性NSCLCに優れた抗腫瘍効果を示すものの、その後治療抵抗性（耐性）となり、T790M変異がEGFR-TKI耐性例の約半数の症例で認められる。2016年3月に、T790Mが耐性例のHER2/neu遺伝子の手術不能又は再発非小細胞肺癌に対し、オシメルチニブ（タグリッソ®）が承認された。これにともない、EGFR-TKI耐性時の再発検や、耐性時のT790M変異および初回診断時EGFR変異の血漿検査の承認など様々な変化が起こってきた。そして2018年8月に、オシメルチニブ（タグリッソ®）のEGFR変異陰性NSCLCに対する一次治療適応拡大が承認され、2019年1月にはダコミチニブ（ビジンプロ®）が本邦で承認された。

この手引きは肺癌臨床に携わる医師のために2009年に作成され、2014年2月に第2版、2016年11月に第3版の改訂を行った。前回改訂後2年ではあるが、肺癌学会バイオマーカー委員会ではこの領域の急速な進歩に鑑み、2018年11月に手引きの第4.0版への改訂を行い、今回第4.2版への小改訂を行った。

I. EGFR分子とその遺伝子変異

1. EGFRによるシグナル伝達

EGFRはHERファミリーとよばれる4つのレセプター分子族の1員であり、EGFR/HER1/erbB1, HER2/neu/erbB2, HER3/erbB3, HER4/erbB4の4つの分子からなっている。HERファミリーの増殖因子（リガンド）は11種知られているが、EGFRに特異的に結合するグループ（EGF, TGFα, amphiregulin (AR)）, EGFRと

図1. EGFR経路

上皮細胞増殖因子受容体（EGFR）は細胞膜を貫通する受容体タンパク質である。チロシンキナーゼはNlobeとClobeよりなり二つのlobeの間にclefにある。ATPが結合する。EGFR-TKIはこの部位においてATPと競合阻害する。受容体に増殖因子（リガンド）が結合すると、図に示すような非対称な二量体（ダイマー）形成が起こり、ATPのリン酸が調節ドメインのチロシン残基に移される。このリン酸化チロシンに様々なタンパク質が結合してときおり下流のタンパク質が活性化されていく。
HER4に結合するグループ（betacellulin（BTC）, heparin-binding EGF（HB-EGF）, epiuregulin）, HER3, HER4に結合するグループ（neuregulin（NRG）（別名heregulin））の三つに大別できる. HER2には対応するリガンドがなく, 常にリガンドが結合して活性化した状態に類似の構造をとており, 後述するダイマーの相手として選ばれる. 一方, HER3はアミノ酸の置換によってチロシンキナーゼ活性を失っているが, Phosphatidylinositol 3-kinase（PI3K）の調節サブユニットであるp85の結合部位を多く有しておりダイマーの相手として, 特に細胞生存に関わるシグナル伝達に重要である可能性が示唆されている. 6

リガンドが細胞外ドメインに結合すると, 同一分子間でホモダイマーを形成したり, 他のHERファミリー分子とヘテロダイマーを形成したりする. この場合EGFRやHER4どうしのホモダイマーの活性は低く, ヘテロダイマー特にHER2とのヘテロダイマーの活性は高い. この細胞内ドメインのチロシンキナーゼはお互いのチロシン残基をリン酸化して活性化される. するとそのリン酸化部位に特異的に種々のアダプタータンパク（PLCγ, aCBL, GRB2, SHC, p85など）が結合し, さらに下流のRAS-MAPK経路, PI3K-AKT経路, STAT経路などに伝わる. そして, 増殖, アポトーシスの回避, 血管新生, 転移など, 無限増殖を阻害する重要な表現型に寄与すると考えられている. EGFRの過剰発現は肺癌を含む種々の肿瘤で高頻度に認められ, 予後にも関連するため, 分子標的として注目されることとなった（図1）.

2. EGFR遺伝子変異

EGFR是非小細胞肺癌をはじめとする多くの固形癌で過剰発現しており, がんの増殖シグナル伝達の起点となることが知られている. 7-9

2005年にShigematsuらが, 2007年にMitsudomiらがEGFR変異は東洋人も, 女性, 非喫煙者, 腹痛に多くみられることを報告した. 11-12. 2013年のNSCLCのEGFR変異発現頻度をみたメタアナリシス（mutMAP）によるとその頻度は, アジア人（癌の47.9%, 扁平上皮癌の4.6%）, オセアニア人（膿瘍の19.2%, 扁平上皮癌の3.3%）, 既往喫煙者（8.4-35.9%), 非喫煙者（37.6-62.5%）であった. 13, 2015年にはさらに大規模なメタアナリシスの結果（muMAP-II: a global EGFR mutMAP）が報告され, 日本人の肺癌のEGFR変異の頻度は45%(21-68%)であった. 14, 組織学的には肺腺に多いが, 未分化型肺腺で大細胞癌とも見られるような症例, 腫扁平上皮癌, 小細胞癌（とくに腺癌とのcombined type）などでもEGFR変異はしばしば検出される. 腫癌の異型別にみるとTTF-1やサーファクタントを発現しているような肺腺の頻度が高い（50-65%）.15 腫癌200例の解析でEGFR変異性腺癌のIASLC/ATS/ERS分類によるsubtypeはacininar predominant（43/77；55.8%）とpapillary
predominant (26/49; 53.1%) が多いと報告されている。また 200 例中 3 例が lepidic predominant で全例が EGFR 変異陽性であった 16.

II. EGFR-TKI 治療

3. EGFR 低分子チロシンキナーゼ阻害薬

現在、臨床で使用されている EGFR-TKI には第一世代の EGFR 特異的可逆的 TKI であるゲフィチニブ（イレッサ®）、エルロチニブ（タルセバ®）と EGFR/HER2/HER4 を不可逆的に阻害する第二世代のアファチニブ（ジオトリフ®）、そして第三世代 EGFR-TKI としてオシメルチニブ（タグリソ®）がある。オシメルチニブは、EGFR 活性型変異および EGFR T790M 変異に対して選択的に不可逆的に作用する EGFR-TKI である 17.

第一および第二世代の EGFR-TKI の一般的な副作用としては、主に皮膚障害、周辺炎、下痢などが多い 18。一方、オシメルチニブは EGFR 活性型変異と T790M 変異に対しても作用するが、野生型 EGFR への作用は限定的となるよう開発された薬剤であるため皮膚障害、周辺炎、下痢が発現しても軽度であ る 19。重篤な副作用として頻度は少ないが薬剤性肺障害（ILD）があげられる。Sue C.H. らの NSCLC 患者における EGFR-TKI 関連 ILD に関するメタアナリシスでは、初回 EGFR-TKI 治療で 1.12%，再投与で 1.13% のILD 発現頻度である。しかし日本人コホートでのILD 発現率は日本人以外と比較して極めて高く、重篤である（完全格 = 4.77% vs 0.55%，p < 0.001，高格 = 2.49% vs 0.37%，p < 0.001，グレード 5; 1.00% vs 0.18%，p < 0.001）21。またタグリ
4. EGFR 遺伝子変異と EGFR-TKI 感受性

一般に EGFR 変異がおこると EGFR チロシンキナーゼの ATP 結合部位に構造変化を起こすため、リガンドの刺激がなくても恒常的に活性化するようになり、癌細胞はその増殖や生存がこの経路に依存した状態となる (oncogene addiction)。EGFR-TKI は EGFR チロシンキナーゼ領域において ATP の結合を競合的に阻害し、EGFR の自己リン酸化を抑制する。その結果、下流へのシグナル伝達を遮断し、抗腫瘍効果を示す 24。

4-1. EGFR 活性型遺伝子変異（common mutation）：エクソン 19 欠失変異と L858R 変異

EGFR 活性型変異（common mutation）のこれまで報告されている頻度はエクソン 19 欠失変異 44.8%（2573/5741）、L858R 変異 39.8%（2283/5731）である 10, 25-29。いずれも EGFR-TKI に高い感受性を示すが、変異のサブタイプによって有効性が異なる。EGFR 変異有する進行 NSCLC 患者を対象とした 12 の臨床試験の統合解析において、EGFR-TKI 治療による無増悪生存期間（PFS）と全生存期間（OS）と奏効割合（ORR）に関して、エクソン 19 欠失変異が L858R 変異にくらべ有意に良好であった。PFS のハザード比（HR）= 0.69; 95% CI, 0.57-0.82; p <0.001）, OS の HR=0.61; 95%CI, 0.43-0.86; p=0.005）, ORR のオッズ比（odds ratio, 2.14; 95%CI, 1.63-2.81; p <0.001）。また EGFR 変異別の臨床的背景との関連において、L858R 変異と比較し、エクソン 19 欠失変異のほうが有意に若年者に多く、喫煙歴のある割合が高かった 30。

分子構造上、エクソン 19 欠失変異は ATP 結合部位のループから 3-8 残基が欠失しており、一方 L858R 変異は ATP 結合部位から離れて存在しているために EGFR-TKI に対する効果が異なると考えられている 31。エクソン 19 欠失変異は、α-ヘリックスで残基が欠失した結果、チロシンキナーゼドメインの必須残基の構造変化がおり、EGFR-TKI に対する感受性が L858R 変異と比べより高いと考えられる 32。また L858R 変異は二量体を形成しないと活性化しないが、エクソン 19 欠失変異は単体の状態でも下流シグナルが活性化されるという報告 33 や二量体形成後の自己リン酸化部位が異なり、それに続く下流へのシグナル伝達が異なるという報告も認める 34。これらの、分子生物学的な違いが、EGFR-TKI に対する効果に影響している可能性が示唆される。

4-2. まれな EGFR 遺伝子変異（uncommon mutation）

まれな EGFR 変異として、エクソン 18 のコドン 719 の点変異変異（G719X）、E709X、エクソン 19 欠失変異、エクソン 19 的挿入変異、エクソン 20 的挿入変異、S768I、エクソン 21 的 L861Q などがある。エクソン 20 的挿入変異の頻度は EGFR 変異の 5.8% で 10, 35-38, ORR は第一世代 EGFR-TKI に対して 17% - 37-41、アファチニブに対して 10% と効果が乏しい 42, 43。しかしながら、エクソンチニブに適用するサブタイプも報告されている 44。G719X は第一世代 EGFR-TKI に対する ORR は 32% であるのに対し、LUX-Lung 2, 3, 6 試験の統合解析ではアファチニブに対する ORR は 78% として報告されている 10, 43。S768I と L861Q は第一世代 EGFR-TKI に対しそれぞれ、42, 39% の ORR で 10、アファチニブに対しそれぞれ 100%, 56% の ORR であった 43。

Kohsaka らは mixed-all-nominated-mutants-in-one (MANO) 法を開発し、この方法を用いて EGFR の多くの意義不明の変異（variants of unknown significance; VUS）の中から形質転換能力とそれらの EGFR-TKI に対する感受性を評価した。この結果、エクソン 19 内のゲフィチニブおよびエルロチニブ非感受性ミスセンス変異、ならびに L833V, A839T, V851I, A871T および G873E など、EGFR-TKI 耐性にかかわる突然変異が同定され、L858R 変異の 12.8% が compound mutations を有し、ゲフィチニブの初期耐性に関与している可能性について報告した 45。
5. EGFR 遺伝子変異陽性 NSCLC に対する治療

EGFR 変異陽性に限定しない NSCLC に対する EGFR-TKI の第 III 相比較試験では、negativeな結果が続いた。まず、EGFR-TKI の標準化学療法への上乗せ効果および延命効果をみた四つの臨床試験（TALENT46、INTACT147、INTACT248、TRIBUTE49）ではいずれも negativeな結果であった。次いで、既治療進行 NSCLC に対するゲフィチニブ（ISEL 試験50）あるいはエルロチニブ（BR.21 試験51）と best supportive care の比較試験が行われたが、BR.21 試験のみエルロチニブの延命効果を示した。

セカンドライン以降でのドセタキセルとの比較試験において、国内の V15-32 試験はゲフィチニブの非劣性が証明されず52、海外での INTEREST 試験ではゲフィチニブのドセタキセルに対する非劣性が証明された53。

これらの混沌とした状況に終止符を打ったのは、アジアで行われたカルボプラチン+パクリタキセル対ゲフィチニブの第 III 相試験 IPASS54 である。本試験では、非軽喫煙歴の腺癌症例を対象にゲフィチニブの PFS における優越性が検証されたが、試験全体において統計学的にはゲフィチニブの優越性が示されたものの、両群の PFS 曲線が交差する解釈が難しい結果が示された。しかし、EGFR 変異のサブセット解析にて、EGFR 変異陽性群ではゲフィチニブ群が明らかに化学療法群に勝り（HR=0.48）、一方の EGFR 変異陰性群では全く逆の結果となったことから（HR=2.85）、EGFR-TKI の効果予測因子が EGFR 変異である可能性が示唆された（表1）。

5-1. 初回治療における EGFR-TKI vs. 化学療法の臨床試験

IPASSや韓国で行われたFirst-Signal 試験55のような臨床的背景因子（腺癌、非喫煙者）ではなく、EGFR 変異陽性 NSCLC に対するゲフィチニブの効果を検証する第 III 相臨床試験は、まずわが国から世界に先駆けて2つ報告された。NEJ002 試験56とWJTOG3405 試験57は、ともにゲフィチニブを試験治療群とし、標準治療群を前者はカルボプラチン+パクリタキセル、後者はシスプラチン+ドセタキセルとした。いずれの試験においても、PFS ではゲフィチニブ群が優越性を示し、OSについては両群で差を認めなかった56, 57。これは2次治療以降のクロスオーバーによるもので、WJTOG3405 試験の生存期間中央値（MST）は36か月を超える長いものであった（表1）。その後、エルロチニブとプラチナ併用療法との比較試験として中国から OPTIMAL 試験58、欧州からは EURTAC 試験59が報告され、PFS および ORR ともにエル

<table>
<thead>
<tr>
<th>Study (n)</th>
<th>レジメン</th>
<th>含む群</th>
<th>経過時間（ヶ月）</th>
<th>HR（95%CI）</th>
<th>OS（ヶ月）</th>
<th>HR（95%CI）</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPASS (n=261)</td>
<td>Gefitinib vs. CBDDA/PTX</td>
<td>Ex19/L858R+Others</td>
<td>71 vs. 47</td>
<td>9.5 vs. 6.3</td>
<td>0.48（0.36-0.64）</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>First-SIGNAL (n=42)</td>
<td>Gefitinib vs. CDDP/GEM</td>
<td>Ex19/L858R</td>
<td>85 vs. 38</td>
<td>8.0 vs. 6.3</td>
<td>0.54（0.27-1.1）</td>
<td>27.2 vs. 25.6</td>
</tr>
<tr>
<td>NEJ002 (n=228)</td>
<td>Gefitinib vs. CBDDA/PTX</td>
<td>Ex19/L858R + Others (6%)</td>
<td>74 vs. 31</td>
<td>10.8 vs. 5.4</td>
<td>0.30（0.22-0.41）</td>
<td>p<0.001</td>
</tr>
<tr>
<td>WJTOG3405 (n=172)</td>
<td>Gefitinib vs. CDDP/DTX</td>
<td>Ex19/L858R</td>
<td>62 vs. 32</td>
<td>9.6 vs. 6.6</td>
<td>0.56（0.41-0.77）</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>EURTAC (n=174)</td>
<td>Erlotinib vs. CDDP or CBDDA/DTX or GEM</td>
<td>Ex19/L858R</td>
<td>61 vs. 18</td>
<td>9.7 vs. 5.2</td>
<td>0.37（0.25-0.54）</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>OPTIMAL (n=165)</td>
<td>Erlotinib vs. CBDDA/GEM</td>
<td>Ex19/L858R</td>
<td>83 vs. 36</td>
<td>13.7 vs. 4.6</td>
<td>0.16（0.11-0.26）</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>ENSURE (n=217)</td>
<td>Erlotinib vs. CDDP/GEM</td>
<td>Ex19/L858R</td>
<td>63 vs. 34</td>
<td>11 vs. 5.6</td>
<td>0.42（0.27-0.66）</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>LUX-lung 3 (n=345)</td>
<td>Afatinib vs. CDDP/PEM</td>
<td>Ex19/L858R+Others (11%)</td>
<td>56 vs. 23 (61 vs. 22)*</td>
<td>11.1 vs. 6.9 (13.6 vs. 6.9)*</td>
<td>0.58（0.43-0.76）</td>
<td>p=0.001</td>
</tr>
<tr>
<td>LUX-lung 6 (n=363)</td>
<td>Afatinib vs. CDDP/GEM</td>
<td>Ex19/L858R+Others (11%)</td>
<td>74 vs. 31</td>
<td>11.0 vs. 5.6</td>
<td>0.28（0.20-0.39）</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

* exon 19欠失変異とL858R変異のみ（n=308）
ロチニブの優越性が示された．さらにアファチニブとプラチナ併用療法の第 III 相臨床試験が行われ、LUX-Lung 3 試験 60 ではエレコチニブ+ゲフィチニブ群と LUX-Lung 6 試験 61 ではエレコチニブ+ダコチニブ群との比較が行われ、主要評価項目の PFS では、両試験において化学療法群に対するアファチニブ群の有意な延長効果を認めた（表 1）．2015 年に LUX-Lung 3 試験と LUX-Lung 6 試験の OS の統合解析の結果が報告され、LUX-Lung 3 試験 60 ではシスプラチン+ペメトレキセド群と LUX-Lung 6 試験 61 ではシスプラチン+ゲムシタビン群との比較が行われ、主要評価項目の PFS では、両試験において化学療法群に対するアファチニブ群の有意な延長効果を認めた（表 1）．

腺癌を対象に 2 次治療以降でエルロチニブとゲフィチニブを比較する第 III 相比較試験（WJOG5108L 試験）が行われ、主要評価項目である PFS においてゲフィチニブのエルロチニブに対する非劣性を証明され、EGFR 変異全体・エクソン 19 欠失変異・L858R 変異いずれのサブグループ解析においても非劣性を認めなかった 64（表 2）．ゲフィチニブとアファチニブとの第 IIb 相比較試験（LUX-Lung 7 試験）の結果が報告された．LUX-Lung 7 試験では主要評価項目である PFS と time-to-treatment failure がアファチニブ群において有意に延長したが 65，OS には差がなかった 66（表 2）．この試験では LUX-Lung 3 試験と LUX-Lung 6 試験の統合解析結果と同様、L858R を有する患者においてもアファチニブ群において PFS や奏効率はエレコチニブ 19 欠失変異と同様に良好な結果であったが、あくまでも第 IIb 相比較試験のサブグループ解析である．

また第二世代 EGFR-TKI であるダコミチニブとゲフィチニブとの第 III 相比較試験（ARCHER 1050）においても主要評価項目である PFS と副次評価項目である OS がダコミチニブ群において有意に延長した 67, 68（表 2）．しかし中枢神経系（CNS）転移を除外した患者集団の結果であり、66％の患者にダコミチニブの減量が必要となった．有害事象が課題と思われる．なお、本試験における患者の組み入れに際して実施された EGFR 変異検査には、キアゲン社の Therascreen と同キットがコンパニオン診断薬として使用されている．

これを EGFR-TKI 同士の臨床試験に決定打を放ったのが第三世代のオシメルチニブと第一世代 EGFR-TKI のゲフィチニブあるいはエルロチニブとの第 III 相比較試験

<table>
<thead>
<tr>
<th>Study (n)</th>
<th>Phase</th>
<th>Time</th>
<th>レジメン</th>
<th>臨床条件</th>
<th>治験発現率（%）</th>
<th>PFS（月）</th>
<th>HR（95％CI）</th>
<th>OS（月）</th>
<th>HR（95％CI）</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJOG 5108L (n=561) * EGFR変異陽性，ns=401</td>
<td>III</td>
<td>2nd</td>
<td>Gefitinib vs. Erlotinib</td>
<td>プレランス ◆ Ex19/L858R ◆ Others</td>
<td>*80.9 vs. 55.0</td>
<td>*8.3 vs. 10.0</td>
<td>*1.039 (0.870-1.236)</td>
<td><0.424</td>
<td>26.5 vs. 31.4</td>
</tr>
<tr>
<td>LUX-Lung 7 (n=319)</td>
<td>IIb</td>
<td>1st</td>
<td>Afatinib vs. Gefitinib</td>
<td>Ex19/L858R</td>
<td>72.5 vs. 56.0</td>
<td>11.0 vs. 10.9</td>
<td>0.74 (0.57-0.95)</td>
<td>p=0.0176</td>
<td>27.9 vs. 24.5</td>
</tr>
<tr>
<td>ARCHER 1050 (n=452)</td>
<td>III</td>
<td>1st</td>
<td>Osimertinib vs. Gefitinib</td>
<td>Ex19/L858R</td>
<td>75 vs. 72</td>
<td>14.7 vs. 9.2</td>
<td>0.69 (0.47-0.97)</td>
<td>p=0.0001</td>
<td>34.1 vs. 26.8</td>
</tr>
<tr>
<td>FLAURA (n=172)</td>
<td>III</td>
<td>1st</td>
<td>Osimertinib vs. Gefitinib/Erlotinib</td>
<td>Ex19/L858R</td>
<td>80 vs. 76</td>
<td>18.9 vs. 10.2</td>
<td>0.46 (0.37-0.57)</td>
<td>p<0.001</td>
<td>NR</td>
</tr>
</tbody>
</table>

* EGFR変異陽性の401名の解析
（FLAURA 試験）である。オシメルチニブ群において PFS が有意に延長し、脳転移症例において総合的に Grade3 以上の毒性も有意に少なかった 20, 69。この試験でのオシメルチニブの有効性および耐容性から、オシメルチニブは EGFR 変異陽性 NSCLC の初回標準治療となった（表 2）。

しかしながらオシメルチニブと第二世代 EGFR-TKI の直接比較試験がなされていないこと、また FLAURA 試験での OS の結果がまだ不明であるため、今後これらの結果が待たれるところである。

5-3. EGFR-TKI と他の薬剤の併用療法

また、近年では EGFR-TKI と他の薬剤の併用療法を検討した臨床試験での報告が相次いでいる。エルロチニブ+ベパジマブの JG25567 試験 70 では PFS は良好であったが OS には差がなかった 71。ゲフィチニブ+ベパジマブの OLCSG1001 試験 72、ゲフィチニブ+ベメトレキセドの JMIT 試験 73、ゲフィチニブ+カルボプラチン/ベメトレキセドの NEJ005/TCOG0902 試験 74 などで EGFR-TKI と他の薬剤の併用療法について報告されている。しかしこれらの試験はすべて第 II 相臨床試験である。EGFR-TKI と他の薬剤との併用療法を検討した第 III 相臨床試験として EGFR 変異を有する未治療進行 NSCLC に対するゲフィチニブ単独療法とゲフィチニブ/カルボプラチン/ベメトレキセド併用療法を比較する NEJ009 試験では併用療法群において PFS と OS ともに有意に延長した 75。併用療法群の OS 中央値が 52.2 カ月と驚くべき結果であった。エルロチニブ/ベパジマブ併用療法とエルロチニブ単剤療法を比較する NEJ026 試験では併用療法群において PFS は有意に延長したが OS の結果はまだ出ていない 76。

6. EGFR 遺伝子野生型における EGFR-TKI

一方、BR. 21 試験の結果からは EGFR 変異陰性例（野生型）であっても EGFR-TKI の有用性があると認識され 51。エルロチニブについては EGFR 野生型 NSCLC の二次治療以降の選択肢の 1 つとされてきた。しかし EGFR 野生型 NSCLC を対象とした第 III 相試験（TAILOR 試験）では、エルロチニブは、ドセタキセルよりは明らかに劣る結果が示されている 77。また本邦でもプラチナ製剤治療療効のある進行 NSCLC を対象とし、2, 3 次治療でのドセタキセルとエルロチニブを比較する第 III 相試験（DELTA 試験）が報告され、サブセット解析ではあるが EGFR 野生型 NSCLC に対してドセタキセル群は有意に PFS が良好であった 78。このため EGFR 変異陰性もしくは不明におけるエルロチニブ単剤は有効性と間質性肺障害のリスクなどから推奨するだけの根拠が明確でなく、日本肺癌学会の肺腫診療ガイドラインにおいても「推奨なし」とされている 79。

7. 獲得耐性

EGFR 変異陽性進行 NSCLC の 1 次治療において EGFR-TKI を投与すると約 1 年で多くの患者に耐性の獲得が認められる。耐性化した症例の 50-60%で、EGFR 遺伝子エクソン 20 領域での T790M 変異（コードン 790 におけるトロオニンからメチオニンへの変異）を認める 3, 4, 60-62。ゲートキーバー変異と呼ばれるこのような変異が起こると、EGFR の ATP への結合性が高まる結果、EGFR-TKI の EGFR への結合が低下することが耐性化の原因であり、癌細胞の EGFR 依存性はまだ保たれているので異なった結合プロファイルを持つ EGFR-TKI は有効であることが期待される（図 3）。

その他の耐性メカニズムとしては MET 増幅 80, 82-84、HGF 過剰発現 85、HER2（ERBB2）増幅 86、CRKL 遺伝子増幅 87、PIK3CA 変異 82、BRAF 変異 88、MAPK1 増幅 89、PTEN 発現喪失 90, 91 などがある。さらに、5-10%の頻度で小細胞肺癌（SCLC）形質転換 80, 82 も報告されており、EGFR-TKI 治療前に Rb と p53 の両方に不活化のある EGFR 変異陽性 NSCLC の場合、SCLC 形質転換リスクが 43 倍高 92。また上皮間葉移行（epithelial-mesenchymal transition; EMT）82, 83-90 の関与も示され、そのメカニズムとしては、AXL 活性化 97、MED12 発現低下 98、TGFβ-IL6 99 が報告されている（図 3）。

13
8. 獲得耐性への治療戦略

8-1. 第三世代 EGFR-TKI 登場以前および T790M 変異陰性あるいは不明症例に対して

1～2 レジメンの化学療法歴があり、第一世代 EGFR-TKI を 12 週以上投与されて PD となった患者を対象として、第二世代 EGFR-TKI のアファチニブとプラセボを比較した第 IIb/III 相試験（LUX-Lung 1）では主要評価項目の OS はプラセボ群と比較して有意な延長は認められなかった。この結果よりアファチニブは第一世代 EGFR-TKI 耐性例では無効であった。

増悪後に EGFR-TKI を継続しながら化学療法を併用する治療戦略（Beyond PD）が理論上是有効とされており、ゲフィチニブ治療中の増悪時にシスプラチン+ペメトレキセドを追加することの意義を検証する第 III 相試験（IMPRESS 試験）が実施された。結果は両群とも PFS は変わらず、OS はゲフィチニブの Beyond PD を行わないほうが良いというものであった。また IMPRESS 試験の血漿バイオマーカー解析で、血漿 T790M 陽性の患者に対しては、2 次治療でブラチナ併用療法を行う際に、ゲフィチニブは併用すべきではないことが示された。一方で、PD 時点で血漿 T790M 変異陰性の患者に対しては、化学療法にゲフィチニブを併用することでベネフィットが得られる可能性も示唆されている。

日本の多施設共同、プロスペクティブ、コホート試験である CSPOR LC-02 試験において、EGFR-TKI の一次治療を受けた EGFR 変異陽性の進行・再発 NSCLC 患者の RECIST PD 後の治療の実態と、EGFR-TKI 治療中止後の臨床経過が調査された。進行によって何らかの臨床症状を有する場合や複数個所での増大、主要臓器を脅かすものを臨床的悪化（clinical PD）と定義して、それに至るまでの期間を評価した。RECIST PD から clinical PD までを継続した患者と RECIST PD の時点で中止した患者では RECIST PD 後の OS に大きな差はみられなかった。ただし多変量解析にて、RECIST PD 後も臨床症状が安定している患者のうち女性、PS 良好、そして Ex19 欠失変異の患者などは beyond PD での EGFR-TKI の継続することで良好な OS を認めた。

図3. EGFR-TKIsに対する獲得耐性的メカニズム
EGFR-TKI 耐性に対し、アファチニブと抗 EGFR 抗体であるセツキシマブを併用した第 I b 相臨床試験で良好な結果が報告された106。T790M 変異陽性群・陰性群に明らかな効果の差は認めなかった。しかし皮疹と下痢などの毒性が強く、EGFR-TKI 耐性例ではなく、EGFR 変異陽性 NSCLC の初回治療でのアファチニブ単剤に対するアファチニブ+セツキシマブ併用療法の効果を検証する第 II 相試験（ACE-Lung）が現在行われている。

現時点では、一次治療で EGFR-TKIs を投与されて耐性または増悪後、T790M 変異陰性の症例には二次治療として細胞傷害性抗癌薬が選択される（推奨度 1A）79。

8-2. 第三世代 EGFR-TKI

T790M 変異を標的とした第三世代 EGFR-TKI が開発され、EGFR-TKI 耐性後の T790M 変異陽性例に対する臨床試験の有用性が報告されていた。

その中でも、最初にオシメルチニブが EGFR 変異陽性の EGFR-TKI 耐性後の T790M 変異陽性 NSCLC に対し 2015 年 11 月に FDA（アメリカ食品医薬品局）で、2016年 2 月に EMA（欧州医薬品庁）で承認された。本邦において 2016 年 3 月に「EGFR-TKI に抵抗性の EGFR T790M 変異陽性の手術不能又は再発非小細胞肺癌」に対しオシメルチニブ（タグリッソ®）が承認された。

その他の第三世代 EGFR-TKI として、ロシレチニブは、効果と毒性的問題で Clovis Oncology 社が欧米での承認申請を撤回し、開発を中止した。オルムチニブ（olmutinib）は EGFR-TKI 耐性後 T790M 変異陽性 EGFR 変異陽性 NSCLC に対する第 I/II 相試験で ORR 56%，PFS 中央値 8.3 カ月と良好な結果であった107。2016 年に韓国でオルムチニブは一旦は承認されたが、開発段階での 2 例の中毒性表皮壊死症(TEN)と 1 例のスティーブンス・ジョンソン症候群の重症皮疹の有害事象について報告が適切にされず、すでに開発は中止され、保険償還リストからも除外された。ASP8273 も毒性のために開発が中止された。その他の第三世代 EGFR-TKI として、Avitinib, EGF816, PF-06747775 や YH5448 などが開発されている。

8-3. オシメルチニブ

オシメルチニブは EGFR キナーゼドメインの ATP 結合部位の C797S に共有結合することで不可逆的に結合する17。オシメルチニブは特徴的な分子構造を有することで従来の EGFR-TKI とは異なる EGFR 活性型変異及び T790M 変異の両方を有する EGFR に選択的に作用するが、野生型 EGFR への作用は限定的である108。

このため T790M 変異を有する EGFR 変異陽性 NSCLC に対する高い効果と毒性の軽減が証明された。オシメルチニブの半減期は 48.3 時間で食事、人種（アジアと非アジア）、性別、体重や年齢の影響はうけにくく安定しており、1 日 1 回の 80mg の固定用量が推奨された109。

2015 年に EGFR-TKI 耐性になった EGFR 変異陽性 NSCLC に対するオシメルチニブの第 I/II 相臨床試験（AURA1/AURA2 試験）にあたる dose escalation 試験と dose expansion 試験の結果が報告された。T790M 変異陽性症例の ORR は 61%，PFS 中央値は 9.6 カ月に対し、陰性症例の ORR は 21%，PFS 中央値は 2.8 カ月であった19。AURA2 試験の extension コホート 201 例の結果も PFS, ORR ともに良好で、サブグループ解析で CNS 転移症例に対するオシメルチニブの高い効果が示唆された110。第 II 相試験（AURA2 試験）でも同様の結果であった111。AURA extension 試験と AURA2 試験の併合解析の結果、ORR は 66%，PFS 中央値が 9.9 カ月で OS 中央値は 26.8 カ月であった112。

EGFR-TKI に抵抗性の T790M 変異陽性 NSCLC 患者を対象としてオシメルチニブとプラチナ併用化学療法を比較する第 III 相 AURA3 試験において、オシメルチニブで有意に PFS の延長を認め（10.1 vs. 4.4 カ月、HR=0.30），ORR もオシメルチニブが有意に良好 (71% vs 31%) であった。オシメルチニブ群で下痢、皮疹、皮膚乾燥や爪回炎などの有害事象を認めるも、いずれも軽微であった。ILD は 4%にみられた113。

EGFR-TKI 未治療の EGFR 変異陽性 NSCLC の中で、de novo T790M 変異の発現が 22-80%にみられ、EGFR-TKI の初期耐性に関与している114-121。オシメルチニブを
EGFR 変異陽性 NSCLC の一次治療にもってくることで、この de novo T790M 耐性を克服できたと考えられた。

第 I 相の AURA 試験で、未治療の EGFR 変異陽性 NSCLC に対するオシメルチニブ一次治療において、ORR 77%と OS 20.5 カ月と良好な結果であった 122。この結果は、治療法での第一世代 EGFR-TKI の有効性と比較しても有益であり、de novo T790M の発現に関係なく、オシメルチニブの一次治療としての第 III相試験（FLAURA 試験）が行われた。これは、局所進行あるいは転移性 EGFR 変異陽性 NSCLC 患者を対象とした一次治療としての第 III相試験（FLAURA 試験）が行われた。これにより、オシメルチニブの有効性は、それまで de novo T790M の発現に関係なく、オシメルチニブの一次治療としての第 III相治療（AURA 試験）が行われた。これは、その結果、初回オシメルチニブの耐性機序に関して、少数の血漿検体での解析では MEK1, KRAS, PIK3CA 変異など様々な変異を認めるも、T790M 変異は認められなかった 122。2018年、欧州臨床腫瘍学会において FLAURA 試験での血漿検体による初回オシメルチニブの耐性機序が報告された。T790M 変異はなく、MET 増幅（15%）、C797S 変異（7%）、PIK3CA 変異（7%）など種々の耐性機序が報告されたが 136、血漿検体では MET 増幅が過少評価され、SCLC 形質転換などは検出できないため組織検体での解析結果が待たれる。今後、初回オシメルチニブの耐性機序に関しては、積極的に再生検をおこない解明していきることが望まれる。

8-5. オシメルチニブに対する耐性機序

EGFR 変異陽性 NSCLC 患者での CNS 転移の頻度は 31%とも多い 123。エルロチニブ 124、ゲフィチニブ 65 やアファチニブ 125 の CNS 内での活性はきわめて低いが、プレクリニカルなデータで、オシメルチニブはゲフィチニブ、ロシレチニブやアファチニブよりも高い CNS 移行率が示された 126。AURA3 試験での CNS 転移症例に対するオシメルチニブの有効性は、CNS ORR が 70%で CNS PFS 中央値は 11.7 カ月であった 127。FLAURA 試験においても、オシメルチニブの CNS ORR は 91%で、CNS PFS 中央値は未到達であるのに対し、ゲフィチニブまたはエルロチニブでは 13.9 カ月（HR=0.48）であった 69。
EGFR-TKI 投与中に病勢増悪を認めた 236 例を対象に行われた前向き観察研究（REMEDY 試験）の結果, T790M 变異検査のための検体採取率は 86.9% (205 例), T790M 検査実施率は 84.3% (199 例), T790M 变異陽性率は 25.8% (61 例), T790M 变異陽性でオシメルチニブが使用された割合は 23.7% (56 例) であった。しかしながら, 血漿検体が全体の 58% (137/236) を占めていたために T790M 变異陽性率が低かった可能性も考えられる。

再生検の問題は, 確定診断時の原発巣に比べ, 奏効後の原発巣は腫瘍が小さくなり, 周囲が線維化しており, 鉗子での組織採取が困難になることである。また CT 上, 腫瘤陰影であっても活動性病変でないこともあり,可能であれば生検前に PET/CT を行い FDG 集積の強い部分を生検することが望ましい。再発部位（新規病変）が末梢肺に生じた場合には, 気管支鏡でのアプローチが困難になり, 肺外の臓器に再発した際には消化器内科, 整形外科や脳神経外科との連携が必要になる。再増悪部位が脳である場合は再生検困難なこともあり, 骨に関しては脱灰処理により遺伝子検査が困難になることもある。脱灰方法については, EDTA 溶液を用いた処理が推奨され, 強酸溶液等を避けるべきである。再生検からの組織検体に加えて, 血中遊離 DNA (cell-free DNA; cfDNA) を対象とした検査 (リキッドバイオーシェー検査) では, 主として血漿検体が用いられる（後述）。

8-7. 免疫チェックポイント阻害薬

EGFR 変異陽性肺癌に関しては, 二次治療での免疫チェックポイント阻害薬 (immune checkpoint inhibitor; ICI)（ニボルマブ, ペムブロリズマブ, アテゾリズマブ）とドセタキネの第 III 相試験を統合解析した結果, ICI はドセタキネに対して OS は改善しなかった。

また, ICI と EGFR-TKI の併用療法においては, 有効性よりも重篤な肝機能障害, ILD や皮疹など有害事象が報告されており, 現時点では EGFR 変異陽性例への ICI と EGFR-TKI の併用療法は推奨されていない。

EGFR-TKI 未治療の PD-L1 発現陽性の EGFR 変異陽性 NSCLC に対する一次治療としてのペムブロリズマブの第 II 相試験の結果, 奏効例がなかったことより試験は無効中止となっている。

実臨床では複数の ICI が使用可能であるが, ニボルマブ治療後の EGFR-TKI 投与時のILD 発症例およびILD による死亡例も報告されている。ILD のリスクに鑑みて, EGFR-TKI と免疫チェックポイント阻害薬の併用および治療シーケンスに関しては慎重に検討すべきである。

9. EGFR-TKI 治療とその他の効果予測因子

EGFR 変異以外にも EGFR-TKI の感受性にかかわる因子がいくつか報告されている。その中には間接的に EGFR 変異の存在と関連をもっているものもある。

9-1. リガンドレベルの変化

ゲフィチニブの奏効例と非奏効例で発現が異なる遺伝子を発現プロファイリングで検討したところ, 非奏効例でリガンドである Amphiregulin と TGFα の強さが示された。また, 血中のこれらのリガンド濃度の上昇はゲフィチニブの感受性と逆相関していた。

HER ファミリーのリガンドは細胞表面に結合した形で合成され, sheddase と呼ばれる蛋白分解酵素で切り出される。ErbB リガンドの sheddase は ADAM (a disintegrin and metalloprotease) ファミリーである。特に ADAM10 と 17 の関与が強い。多くの肺癌細胞株が ADAM17 を発現しており, このような細胞では ERBB3 のリガンドである heregulin が増加している。ADAM の阻害薬である INCB4298 はこの autocrine ループを切ることでゲフィチニブの感受性を高くすることから, ADAM17 が EGFR-TKI の効果を抑制していると考えられる。

9-2. EGFR 遺伝子增幅

Cappuzzo らは EGFR 変異よりも Fluorescent in situ hybridization (FISH) によって検索された EGFR 遺伝子のコピー数の増加の方がゲフィチニブの有効性の予測に より有効であると報告した（全生存期間に対する p 値は EGFR 変異で 0.09 に対して EGFR 増幅は 0.03 であった）
ここで注意しておくべきことは、遺伝子増幅のほかに40%以上の腫瘍細胞がテトラソミー（4染色体性）以上となっている場合（high polysomy）をふくめてFISH陽性としてもあり、関連しないようであった。一方、P13Kの逆の作用をもつのがPTENで腫瘍抑制遺伝子であり、PTEN発現低下があると相対的にAKTが活性化されEGFR-TKI感受性が低くなるとされている。一方、リン酸化AKTの陽性率が高いとゲフィチニブの感受性が高いとの報告もあるが、一定の結論は得られていない。間接的に異常を含むEGFRの活性化をみている場合と、一次的な異常がPTENにあってAKTが活性化している場合と結果が異なると解釈できると思われる。

接続因子であるE-カドヘリンはEGFRと相互作用があることが知られているが、この蛋白発現とEGFR-TKIの感受性には関係しなかった。一方、リン酸化AKTの陽性率が高いとゲフィチニブの感受性が高いとの報告もあるが、一定の結論は得られていない。間接的に異常を含むEGFRの活性化をみている場合と、一次的な異常がPTENにあってAKTが活性化している場合と結果が異なると解釈できると思われる。

9-3. 他のHERファミリー

EGFR変異がある症例において、HER2 FISHは陽性の場合では遺性のある場合とくらべて有意にゲフィチニブ投与後の生存期間が長いと報告されているが、この関係は矛盾する。また、EGFR変異の有無にかかわらずゲフィチニブの感受性の細胞ではerbB3の発現が増加しておりerbB3を介してP13K-AKT経路が活性化されているが、耐性細胞ではerbB3を介していないことが示されている。

III. EGFR遺伝子変異検査

10. EGFR遺伝子変異検査の対象患者

EGFR変異は肺腺癌特異的に認められるEGFR-TKIの効果予測因子であるので、EGFR変異検査は薬物治療を考慮している腺癌患者が基本対象となる。非喫煙者、女性などの臨床背景をもつ患者に相対的に高頻度であるが、絶対的なものではなく男性や喫煙者という理由で検査を施行しないのは適切ではない。組織型については腺扁平上皮癌、大細胞癌と診断される可能性がある低分化な腺癌、それに小細胞肺癌でも報告例があるが、その一部に腺癌成分がある場合が殆どであるので、腺癌成分のある肺癌は検査の対象となる。したがって外科切除標本でどこにも腺癌成分のない扁平上皮癌などではEGFR変異があることはまずなく、適応から外することは妥当である。一方、小さな生検や細胞検体では腫瘍全体の評価はでておらず、これらが扁平上皮癌や小細胞肺癌であってもEGFR変異
検査を施行することは妥当である。またひとつの検体の中の不均一性の有無については様々な報告があるが、Yatabeらの詳細な解析により基本的には無いと考えて良いであろう。すなわち、EGFR 变異は発がん過程のきわめて早期に獲得されると考えられており、EGFR-TKI による治療前であれば、一般に腫瘍細胞に均一に分布している。原発巣と再発巣におけるEGFR変異状態が異なることもきわめて稀であることが示されている。すなわち、EGFR変異は発がん過程のきわめて早期に獲得されると考えられており、EGFR-TKIによる治療前であれば、一般に腫瘍細胞に均一に分布している。原発巣と再発巣におけるEGFR変異状態が異なることもきわめて稀であることが示されている。

一方、EGFR-TKI 治療後に出現した腫瘍に対しては、オシメチニブを用いた治療対象選択のため、特定のコンパニオン診断薬を用いた T790M 耐性変異の有無の確認が必要となる。なお初回の EGFR 変異検査については、2013年にCollege of American Pathologists（CAP）、International Association for the Study of Lung Cancer（IASLC）および Association for Molecular Pathology（AMP）の三学会から EGFR および ALK 遺伝子検査ガイドラインが発出されている。

11. EGFR 遺伝子変異検査に用いる検査法

2004年の EGFR 変異の発見以降は、その検出法が相次いで報告され、本手引ではそれらの解説を行ってきた（付 2）。当初本検査は、質保証体制が整備された主要検査センターによって、薬事未承認検査、すなわち（laboratory developed test；LDT）法に相当する検査（LDT相当法）を用いて、その運用が進められていた。その後、Scorpion-ARMS 法を用いたリアルタイム PCR 法（therascreen®EGFR 変異検出キット；キアゲン社）が 2012年 2月に、また Taqmanprobe 法を用いたリアルタイム PCR 法（コパス®EGFR 変異検出キット；ロシュ・ダ
イアグノスティックス社)が2014年1月にそれぞれIVD承認された。現在はIVD法が、主要検査センターや医療機関において主流となっている。

11-1-1. EGFR-TKI投与前の初回検査

EGFR変異は90%がエクソン21のL858R変異かエクソン19の欠失変異であるので、特定の変異に的を絞った検査が可能である。EGFR-TKI投与前の初回検査において検査対象となる変異は、IVD法を用いる場合、主なL858R変異、エクソン19欠失変異、T790M変異のほか、まれなG719X変異、L861Q変異、エクソン20挿入変異、S768I変異が対象となる。一方、LDT法の場合は、実施機関側の判断に委ねるかたちとなる。2015年度に日本病理学会において実施された医療機関を対象としたEGFR変異検査の実態調査では、LDT法を用いている施設のうち、L858R変異とエクソン19欠失変異の2種あるいはこれにT790M変異を加えた3種のみを検査対象としている施設（とくに医療機関）が一定割合存在することが明らかとなった。IVD法によって検査可能なまれな変異のうち、G719X変異、L861Q変異、S768I変異はアファチニブに対し感受性を示すことが、LUX-Lung2、Lung3、Lung6の統合解析で示された。またエクソン20挿入変異は、第一および第二世代のEGFR-TKIに対し効果が乏しいことが報告されている。これらの結果を踏まえると、LDT法においても、IVD法と同等の変異の種類の検索が推奨される。

11-1-2. EGFR-TKI治療耐性後の二次的T790M変異検査

第一・第二世代のEGFR-TKIが初回のEGFR-TKIとし投与され、その後増悪した場合でオシメルチニブの投与を考慮する際には、増悪後の検体を用いて、T790M変異陽性であることを確認する必要がある。EGFR-TKI耐性にまったNSCLCに対するオシメルチニブの第I相国際共同試験(AURA2試験)で実施された患者データに基づき、米国では2015年11月に、本邦では2016年3月に、コパス®EGFR変異検出キット2.0（以下、コパスEGFRv2.0、ロシュ・ダイアグノスティックス社）がホルマリン固定パラフィン包埋（formalin-fixed paraffin embedded; FFPE）

表3. EGFR遺伝子変異の検出法とその特性

<table>
<thead>
<tr>
<th>Class (in tissue)</th>
<th>Technique</th>
<th>Sensitivity (% of Mutant DNA)</th>
<th>Mutations Identified</th>
<th>Detection of co-mutations</th>
<th>Potential Applications</th>
<th>Ref(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Cobas (JP/US/EU)</td>
<td>3%-5%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>therscreen (JP/US/EU)</td>
<td>1%-10%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Oncomine Dx Target Test (US)</td>
<td>6%-8%*</td>
<td>known & new</td>
<td>Yes</td>
<td>Tissue</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FoundationOne CDx™ (JP/US)</td>
<td>2%-5%**</td>
<td>known & new</td>
<td>Yes</td>
<td>Tissue</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Oncomine® Solid Tumour DNA Kit (EU)</td>
<td>1%-10%</td>
<td>known & new</td>
<td>Yes</td>
<td>Tissue</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MassARRAY® Dx Lung Panel (EU)</td>
<td>1%-10%</td>
<td>known only</td>
<td>Yes (hotspots)</td>
<td>Tissue</td>
<td>161, 162</td>
</tr>
<tr>
<td>RUO</td>
<td>Direct sequencing</td>
<td>10%-25%</td>
<td>known & new</td>
<td>No</td>
<td>Tissue</td>
<td>MS</td>
</tr>
<tr>
<td></td>
<td>Pyrosequencing</td>
<td>5%-10%</td>
<td>known only</td>
<td>No</td>
<td>Tissue</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Multiplex PCR (SnaPshot)</td>
<td>5%</td>
<td>known only</td>
<td>Yes (hotspots)</td>
<td>Tissue</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>WAVE-surveyor</td>
<td>2%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>High-depth NGS (at least 1000x depth)</td>
<td>1%-10%</td>
<td>known & new</td>
<td>Yes</td>
<td>Tissue, Plasma</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Scorpion ARMS</td>
<td>1%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Locked nucleic acid clamp</td>
<td>1%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>TAm-Seq</td>
<td>2%</td>
<td>known & new</td>
<td>Yes</td>
<td>Tissue, Plasma</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>BEAMing</td>
<td><0.1%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Digital droplet PCR</td>
<td><0.1%</td>
<td>known only</td>
<td>No</td>
<td>Tissue, Plasma</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>CAP-P-Seq</td>
<td>~0.02%</td>
<td>known & new</td>
<td>Yes</td>
<td>Plasma</td>
<td>169</td>
</tr>
</tbody>
</table>

組織検体から抽出したゲノム DNA を検査対象にオシメルチニブのコンパニオン診断薬として承認された。オシメルチニブのコンパニオン診断薬として承認されているのは現時点では本法のみである。FFPE 組織検体を用いた本法の承認申請データにおける他の IVD 法との検査結果の一一致率は 95.6％、NGS 法との一致率は 91.0％となっている。

11-2. 血漿検査（リキッドバイオプシー検査）

リキッドバイオプシー検査は、患者の負担も少なく、組織検体採取困難な患者に対しても比較的容易に検査できため、様々ながん種の変異検査での利用に期待が高まっている。NSCLC 患者における血中 cfDNA を用いた EGFR 変異検査のメタアナリシスでは、組織検体の結果を参考基準とした場合、cfDNA 検体の特異性は 0.96％、感度は 0.62％と報告されている110。本メタアナリシスの解析対象となった 27 研究では、cfDNA の抽出に血漿と血清の両方が用いられているが、現在では血漿が推奨されている。血中 cfDNA 検体を用いる検査法は、高感度の BEAMing 法や droplet digital PCR 法を含め組織検体で使用されている方法が IVD 承認されていないが、現在の承認試験で広く使われている（表 3）。

現在、本邦で薬事承認されているリキッドバイオプシーによる検査では、cfDNA を用いている。リキッドバイオプシー検査は、米国において、2016 年 6 月にエルロチニブの、また 9 月にオシメルチニブのコンパニオン診断薬として cobas EGFR Mutation Test v2 が、FDA 承認を取得している。本邦においてもオシメルチニブのコンパニオン診断薬として、コパス EGFR v2.0 による T790M 変異検査が、2016 年 12 月 26 日に承認され、2017 年 7 月 1 日より保険適用された。また、ゲフィチニブ、エルロチニブ、アファチニブに関する EGFR-TKI 投与前の初回検査は、2017 年 8 月 10 日に承認され、2018 年 1 月 1 日より保険適用された。なお、2018 年 1 月 21 日からはオシメルチニブの EGFR-TKI 投与前、初回検査における薬事承認・保険適用である。現在オシメルチニブのコンパニオン診断として実施する二次的 T790M 変異検査でも、再生検による検体採取が不可欠となっているが、国内 30 施設における調査研での再生検成功割合（再生検実施例のうち腫瘍細胞が採取された症例割合）は 79.5％と報告されている137。また外部の悪性腫瘍における研究でも、再生検実施例のうち検体不適正もしくは腫瘍細胞の不採取となった割合は 20％と報告されている171。

血漿検査では、使用する検出法の検出感度の把握が重要となる。コパス EGFR v2.0 を用いた血漿検査における最小検出感度については、同基準の添付文書にデータが示されている（表 4）。血漿検体へ約 220 bp に断片化した細胞核 DNA をスパイクインした際の、野生型 DNA 約 100,000 コピー/mL 中における変異型 DNA の検出限界 (コピー数) が記載されており、最低で 100 コピー (25 ～100) とされている。ここから各変異の最小検出感度を計算すると、0.025％ (S768I およびエクソン 20 插入）～0.1％ (L858R および T790M) となることから、血漿検体を用いた際の最小検出感度は 0.1％程度と考えられる。なお、本手引きの表 3 に EGFR 変異の検出法とその特性が記載されているが、本記載は組織検体を用いた場合の感度である。

<table>
<thead>
<tr>
<th>EGFR変異型</th>
<th>Sheared* cell line DNA (コピー/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G719X (G719A)</td>
<td>100</td>
</tr>
<tr>
<td>エクソン19欠失</td>
<td>75</td>
</tr>
<tr>
<td>S768I</td>
<td>25</td>
</tr>
<tr>
<td>T790M</td>
<td>100</td>
</tr>
<tr>
<td>エクソン20挿入</td>
<td>25</td>
</tr>
<tr>
<td>L858R</td>
<td>100</td>
</tr>
<tr>
<td>L861Q</td>
<td>30</td>
</tr>
</tbody>
</table>

コパス EGFR変異検出キット v2.0 の添付文書より引用
*約 220 bp に断片化、バックグラウンドとして野生型 DNA を約 100,000コピー/mL を含む。

11-2-1. EGFR-TKI 投与前の初回検査

リキッドバイオプシー検査による初回 EGFR 変異検査の承認は、IIIB/IV 期 NSCLC の第一選択薬として、エルロチニブとシスプラチン + ゲムシタビンの有効性と安全性を評価するための多施設オープンラベル無作為化第 III 相試験（ENSURE 試験）172に基づいている。コパス EGFR v2.0 による組織での検査を規準とした場合の陽性一致率 (感度) は 76.7％にとどまるが、陰性一致率 (特異度) は
98.2%ときわめて高い（表5）ため、この検査で陽性である場合は組織でのEGFR変異が陽性とほぼ同等のEGFR-TKIの奏効が期待できるといえよう。なお、コバス EGFR v2.0は、NSCLC病理組織診断または細胞診断された患者において、何らかの理由で組織検体や細胞検体を用いてEGFR変異検査を実施できない場合に血漿検体を用いて検査することを目的としている。また、EGFR変異が血漿検体中に検出されない場合は、偽陰性注1の可能性が少なくなることを考慮して、再生検の可能性について検討し、採取可能となれば組織検体や細胞検体でEGFR変異検査を行うことが推奨される。

注1血漿検査の偽陰性：組織検査において変異陽性であって血漿検査で変異が検出されないこと。

T790M変異は、EGFR-TKIに対する耐性獲得の過程で出現することが多く、T790M変異陽性の腫瘍細胞数は耐性獲得後、臨床経過とともに増加することも知られている。それによって、血液中の腫瘍細胞由来DNAが検出されるが、血漿検体によるT790M変異の検出率が上昇する。従って、同一患者において最初の血液検査でT790M変異が検出されない場合でも、tumor burdenの増加に伴って、後日再度の血液検査でT790M変異が検出される場合がある。EGFR-TKIに対する耐性獲得後に臨床経過とともにT790M変異検査の陽性率も上昇することが報告されている173, 174。検査結果が血漿検査の時期により大きく依存することが示されているが、最適な血漿検査の時期については未だ明らかな知見はない。

オシメルチニブの第II相国際共同試験（AURA2試験）に登録されたNSCLC患者の検体のうちT790M変異検出における血漿検体（コバス EGFR v2.0）とFFPE組織検体（コバス EGFR v1.0）間、および血漿検体を用いたNGS法とコバス EGFR v2.0間の一一致率解析結果を示す（表6）。コバス EGFR v2.0における血漿検査と組織検査の全体一致率は、65.9%であったが、血漿を検体とし、コバス EGFR v2.0とNGS法による一致率を評価したところ、全体一致率は91.3%であった。

表6. オシメルチニブ第II相国際共同試験（AURA2）の患者検体でのT790M変異検出における血漿検体と各検査法の一一致率

<table>
<thead>
<tr>
<th>T790M変異</th>
<th>コバス®EGFR変異検出キットv1.0（FFPE組織検体）</th>
<th>コバス®EGFR変異検出キットv2.0（血漿検体）</th>
<th>NGS法（血漿検体）</th>
</tr>
</thead>
<tbody>
<tr>
<td>阳性</td>
<td>131</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>隠性</td>
<td>92</td>
<td>89</td>
<td>12</td>
</tr>
<tr>
<td>陽性一致率</td>
<td>58.7% (131/223)</td>
<td>91.5% (129/141)</td>
<td></td>
</tr>
<tr>
<td>隠性一致率</td>
<td>80.2% (89/111)</td>
<td>91.1% (163/179)</td>
<td></td>
</tr>
<tr>
<td>全体一致率</td>
<td>65.9% (220/334)</td>
<td>91.3% (292/320)</td>
<td></td>
</tr>
</tbody>
</table>

オシメルチニブの第I相試験（AURA I試験）で使用された検査検体の後ろ向き解析では、血漿検体および組織検体によるT790M変異陽性患者のORR（63% vs 62%）とPFS中央値（9.7ヵ月 vs 9.7ヵ月）の比較では、両者は同等であった。一方、組織検体でT790M変異陽性であった158例のうち47例（29.7%）が血漿検体でのT790M変異が陰性であり、そのPFSは16.5ヵ月と組織検体および血漿検体でT790M変異陽性であった症例の2.8ヵ月よりかなり長いものであった175。

これらの試験では、組織検査によりT790M変異陽性であった患者に対して試験が行われたため、血漿検査で
T790M 変異陽性であった患者集団に対するオシメルチニブの効果が検証されていない状況である。そのため、リキッドバイオプシー検査のみが実施され、T790M 変異陽性であった症例にはオシメルチニブを推奨することが推奨される。従って、本邦では現時点において、組織採取が難しい時に限ってリキッドバイオプシー検査が使用されることを推奨している。また、リキッドバイオプシー検査において変異陰性であった場合は、腫瘍由来 DNA が血漿中に十分に漏出していないことを考慮して、再生検の可能性について検討すべきである。病勢の進行等によって組織採取が可能になった時点において、組織検体を用いてT790M 変異検査を行い、その有無を確認することが推奨される。なお、Oxnard らは二次的T790M 変異検査では、最初の検査を血漿検体で行い、T790M 変異陰性患者に対し再生検された組織・細胞検体を用いる検査アルゴリズムを提案している。また、2016年9月に改訂されたオシメルチニブの米国添付文書やIASLCの合意声明においては、再生検の可否を先行検討し、困難な場合について血漿検体による二次的T790M 変異検査を実施する検査アルゴリズムを推奨している。なお、2018年の日本臨床腫瘍学会において、コパスEGFR v2.0 を用いてT790M 血漿検査を前向きに実施した場合のオシメルチニブの治療効果を評価した試験(WJOG8815L/LPS)の結果が Takahama らにより報告され、本血漿検査の有用性が直接的に示されるなど、血漿検査に対する知見の蓄積が待たれる。

12. 対象となる検体とその適正性について

本検査では、さまざまな臨床検体が検査対象となりうるが、検査センターへ提出される割合は、主として FFPE 組織検体と細胞検体（胸水、気管支塗抹細胞、気管支洗浄液等）が多い。IVD 法では FFPE 組織検体での検査が原則となっているが、臨床上、細胞検体は積極的に用いられている。腫瘍細胞の新鮮凍結検体の利用も可能であるが、検体の選択には、その特徴をよく理解することが重要である。上記の検査方法において感度が異なると同様に、対象となる検体や採取によって腫瘍細胞の存在確認の方法や許容腫瘍細胞割合が異なるので注意が必要である。
取り扱いについては、日本病理学会から発出されている「ゲノム診療用病理組織検体取扱い規程」を参照されたい。

12-1-2. FFPE細胞検体（セルブロック検体）

近年肺癌では、免疫組織化学染色（IHC）法やFISH法を用いるALK検査が開始されて以来、胸水等の細胞検体からのセルブロックの検査の重要性が増している。セルブロックでの保管により、FFPE組織検体同様、コンパニオン診断や鑑別診断など目的としたIHC法やFISH法による解析が繰り返し可能となる。また腫瘍細胞の含有割合の確認も容易となる。FFPE組織検体同様、コンパニオン診断や鑑別診断などを目的としたIHC法やFISH法による解析が、繰り返し可能となる。また腫瘍細胞の含有割合の確認も容易となる。

12-1-3. 細胞検体

呼吸器領域における細胞検では、以下のような複数の方法による検体採取が行われている。一部を除き、細胞検体の核酸品質は、FFPE組織検体やセルブロック検体に比えて良好であり、2018年のCAP/IASLC/AMPのアップデート遺伝子検査ガイドラインでも、その使用を推奨している。

a) 胸水・心嚢液：これらの検体は、時として腫瘍細胞数が乏しい場合があり、腫瘍細胞の確認が必須である。上述のセルブロックの作製も考慮されたい。

b) 経気管支穿刺細胞・経気管支穿刺吸引細胞・リンパ節穿刺吸引細胞：これらの検体では適切に腫瘍から採取されれば腫瘍細胞に富んだ検体を採取することができる。これが報告されている。これら検体についてはスメア標本からのDNA抽出が可能であるが、腫瘍細胞の存在の確認が必要である。

12-1-4. 新鮮凍結検体

リキッドバイオスピーカ検査では、血漿中に遊離しているDNA断片からEGFR変異検出する。血漿検体は、組織検体と異なり、腫瘍細胞の割合やDNAの質、量に基づいて評価できないため、血液採取、血漿の分離、血漿検体の保管に至るプレアナリシスの段階において適切に扱われた検体を使用する必要がある。特に採血後の検体を長時間室温で放置すると、血球成分の崩壊やDNAの分解の原因が生じる。また、血漿成分を分離する際に血球成分が混入すると、有核細胞由来のゲノムDNAが原因で、偽陰性となる可能性がある。IVD法では、EDTA-2Kの採血管を使用した場合、血漿の分離は、採血後8時間以内安定である。血漿分離後の血漿検体は、15〜30℃で6日間、2〜8℃で3日間、-25〜-15℃で12か月、そして-70℃以下の場合は12か月保管
可能である。また、ASCO と CAP は合同で、血漿検体に対する取り扱いについてレビューをしている。（Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP) Joint Review）186, 187

13. 薬事承認および保険診療の観点からみた本検査のあり方

EGFR-TKI 投与前の初回検査については、2011年9月にゲフィチニブの添付文書改訂で EGFR 変異陽性が適応条件となったことを受け、2012年4月の診療報酬改定で2000点が2100点に引き上げられ、このとき患者1人につき1回のみとする制限が撤廃された。2012年9月にはtherascreen® EGFR 変異検出キットが EGFR 変異検査として初めて IVD として承認され、これに合わせ IVD 承認されたリアルタイム PCR 法では 2500 点が算定可能となった。一方、EGFR-TKI 耐性患者的T790M 変異検査については、2016年3月にオシメルチニブのコンパニオン診断薬として承認された EGFR 変異検査については、再度治療法を選択する必要がある場合でも算定できる。

保険診療においては IVD 承認された診断薬の使用が原則であるが、悪性腫瘍を対象とした多くの体細胞遺伝子検査では、IVD 化の遅れから、非 IVD 法（自家調製試薬を用いた方法；home-brew 法）が現在でも多用されている。2016年4月に厚生労働省課長通知として医薬品医療機器法における NGS 等の取扱いが示され、今後こうした技術の保険診療下の検査実施は、コンパニオン診断法として薬事承認された NGS 法の使用が前提となっている。こうした状況を踏まえると、質保証体制が整備された主要検査センターで実施されている上記一部の LDT 相当法を除き、IVD 法での EGFR 変異検査の実施が強く推奨される。

表7に EGFR 変異検査の保険適用状況を示す（2019年3月6日時点）。

13-1. T790M 血漿検査の検査回数について

前述した通り、血液検査の場合、検査結果が検査を行ったタイミングに大きく依存することが考えられているが、最適な検査時期については未だ定着していない。最適な検査時期を推奨できない現時点においては、過度な検査回数を制限することにより、血漿検査の偽陰性を招き、T790M 変異陽性患者のオシメルチニブ治療の機会を喪失することが強く懸念される。さらに、肺癌患者の EGFR-TKI 治療および化学療法の臨床経過において奏効と増悪を繰り返すことにより、T790M 変異陽性細胞の
出現状況（陽性または陰性）が動的に変化することも報告されている。従って、患者の不利益を回避する観点から、初回のT790M変異血漿検査が陰性であっても、病勢の進行等によりT790M変異陽性が強く疑われる症例であって、再生検が不可能であり、かつ再度治療選択を検討する必要がある場合等においては、再度（複数回）のT790M変異血漿検査の実施が望ましいと考える。しかし、現状では血漿検査（D006-12）に対し、留意事項として、「肺癌の詳細な診断及び治療法を選択する場合、又は肺癌の再発や増悪により、EGFR遺伝子変異の2次的遺伝子変異等が疑われ、再度治療法を選択する場合に、患者1人につきそれぞれの場合に1回に限り算定できる。ただし、本検査の実施は、医学的な理由により、肺癌の組織検査を検体として、区分番号「D004-2」悪性腫瘍検査の「1」悪性腫瘍遺伝子検査の「イ」EGFR遺伝子検査（リアルタイムPCR法）又は「ロ」EGFR遺伝子検査（リアルタイムPCR法以外）を行うことが困難な場合に限る。」と記されている。

13-2. 同一中月中のT790M血漿検査・組織検査の実施について

血漿検査が優先される場合として、組織検査の標的病巣部位が内科的に到達困難で手術等の侵襲的な手技が必要な場合もしくは全く組織検査不能の場合や、組織検査による出血、縦隔炎、呼吸不全、肺炎、気胸等のリスクを考慮した結果、組織検査のリスクが高いと判断された場合が想定される。以上のような場合においてT790M変異血漿検査が実施されるが、結果が陰性の際には、組織検査合併症のリスクが高いことを承知の上で血管内視鏡生検、CT下生検等による組織採取に踏み切る例や侵襲を伴う全身麻酔下外科的手術（肺切除、縦隔鏡下切除、骨転移・病的骨折手術、転移性腫瘍切除等）により腫瘍組織を採取する例がある。このような症例においては血漿検査から時間を置かずに組織採取並びに組織検査を行う必要性から、同一中月中に血漿検査と組織検査、双方の実施が必要となる場合がある。

しかししながら、血漿検査の回数については、保険診療上の、「肺癌の詳細な診断及び治療法を選択する場合、又は肺癌の再発や増悪により、EGFR遺伝子変異の2次的遺伝子変異等が疑われ、再度治療法を選択する場合に、患者1人につきそれぞれの場合に1回に限り算定できる」という算定制限が設けられている。また、同一中月中に血漿検査および組織検査の双方が実施された場合は、主たるものののみ算定するという制限が設けられているため、実施においては注意が必要である。

表7. EGFR遺伝子変異検査の保険適用状況

<table>
<thead>
<tr>
<th>検査法</th>
<th>項目</th>
<th>保険点数</th>
<th>注意したい留意事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>組織検査</td>
<td>IVD法</td>
<td>D004-2悪性腫瘍組織検査 1悪性腫瘍遺伝子検査(リアルタイムPCR法)イEGFR遺伝子検査(リアルタイムPCR法)</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>非IVD法</td>
<td>D004-2悪性腫瘍組織検査 1悪性腫瘍遺伝子検査 □EGFR遺伝子検査(リアルタイムPCR法以外)</td>
<td>2,100</td>
</tr>
<tr>
<td>血漿検査</td>
<td>IVD法</td>
<td>D006-12EGFR遺伝子検査（血漿）</td>
<td>2,100</td>
</tr>
</tbody>
</table>

| 注意したい留意事項 |
最後に

実臨床において適正な EGFR 変異検査に基づいた治療選択がなされる目的で解説した。一方で、前述の如く欧米においては、既に NGS を用いたクリニカルシーケンスが導入されている。本邦においても、2016 年 4 月に厚生労働省課長通知として「遺伝子検査システムに用いる DNA シーケンサー等を製造販売する際の取扱いについて（薬生機発 0428 第 1 号・薬生監麻発 0428 第 1 号）が発出された。さらに、医薬品医療機器法における NGS 等の取扱いが示され、NGS をベースとする検査の臨床導入実現に向け前進し、2018 年 2 月にがんゲノム医療中核拠点病院が、同年 3 月にはがんゲノム医療連携拠点病院が指定されるなど、実臨床におけるがんゲノム医療体制が整いつつある。また、NGS 法は先進医療として導入されている他、パネル検査が薬事承認申請中であることから、遺伝子プロファイルに基づいた治療が臨床現場で実装される日も遠くないものと考えられる。NGS 法を実施する上では、検体の品質、患者の状態に対して検査にかかる時間（turn around time），保険報償や治療可能な薬剤へのアクセスなど課題も議論されている。検査における品質・精度における見解に関しては、2018 年 10 月に臨床検査振興協議会より「がん遺伝子パネル検査の品質・精度の確保に関する基本的考え方（第 1.0 版）」が発出されている。今後は、これらの NGS 法における課題を考慮しつつ、現在の EGFR 変異検査と NGS 法をどのように使い分けていくかを検討していく必要がある。
参考文献

75. Nakamura A, Inoue A, Morita S, et al. Phase III study comparing gefitinib monotherapy (G) to combination therapy with gefitinib, carboplatin, and pemetrexed (GCP) for untreated patients (pts) with advanced non-small cell lung cancer (NSCLC) with EGFR mutations (NEJ009). J Clin Oncol (suppl; abstr 9005) 2018;36.

133. Bearz A, De Carlo E, Dolianna R, et al. Acquired BRAF V600E Mutation as Resistant Mechanism after Treatment with Third-

159. Lindeman NI, Cagle PT, Aisner DL, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International
ALK型遺伝子変異を有する進行期非小細胞肺癌に対するトキシノレニンの臨床試験

付録

付1 主なEGFR変異の検出法の解説（本手引き第2.1版掲載分）

<table>
<thead>
<tr>
<th>検査法の種類</th>
<th>説明</th>
</tr>
</thead>
</table>
| 1)塩基配列決定により変異を特定する方法* | Sanger法による塩基配列決定をおこなう方法。通常は数時間で300塩基ほどの配列が決定できる。変異アレルが10%以上あたることが必要で、感度はあまり良好ではないが、変異検出の基本となる方法である。本法をEGFR変異検査に用いることは本邦ではほとんどなくなった。
| 直接塩基配列法（Direct sequencing法） | |
| 2)変異のスクリーニングが可能な方法（未知の変異の検出が可能）** | 解析対象の領域をPCRで増幅し、PCR産物の長さをgenetic analyzerで検討する。エクソン19欠失変異やエクソン20への挿入変異では変異によってDNAの長さが変化するため、このような変異であれば未知なものでもスクリーニングできる。 |
| PCR-SSCP法 | 一本鎖DNA断片塩基配列特異的な高次構造による電気泳動距離の差により変異の有無を検出する方法。 |
| Fragment（length）解析法 | 解析対象の領域をPCRで増幅し、PCR産物の長さをgenetic analyzerで検討する。エクソン19欠失変異やエクソン20への挿入変異では変異によってDNAの長さが変化するため、このような変異であれば未知なものでもスクリーニングできる。 |
| 3)特定の変異の検出を高感度、迅速に行う方法*** | PNA (peptide nucleic acid)を用いたリアルタイムPCR法。PNAとLNAは1塩基のミスマッチでTm値が大きく減少するため、通常のDNAプローブよりも特異性は向上しており、高感度測定が可能となった。感度は1%程度。 |
| PNA LNA PCR-Clamp法 | PNA (peptide nucleic acid)を用いたリアルタイムPCR法。PNAとLNAは1塩基のミスマッチでTm値が大きく減少するため、通常のDNAプローブよりも特異性は向上しており、高感度測定が可能となった。感度は1%程度。 |
| PCR-Invader法 | PCR後にInvader法を行う。2種類のプローブとサンプルDNA（PCR増幅産物）が3重鎖を形成した部位を酵素が切断すると蛍光シグナルが発生する。特に遺伝子変異が1塩基置換の場合、プローブの結合のみに頼るリアルタイムPCRと比較して特異性は非常に高く、高感度測定が可能である。感度は1%程度。 |
| Cycleave法 | Point略変異を検出する方法である。変異特異的なプローブを作成し両端を蛍光色素とクエンチャーでラベルしておく。変異特異的な塩基はRNAで合成しておく。これがPCR産物とハイブリダイズすると酵素が切断され、クリッピングが誘発され実験は開始される。感度は1%程度。 |
| Scorpion ARMS法 | ScorpionプライマーとARMSプライマーを用いたリアルタイムPCR法。プローブ部の変異部位に結合するPCRプライマーの3'端をミスマッチな塩基に置換することで伸長反応をブロックするARMS法（amplification refractory mutation system）と、増幅されたPCR産物を検出するScorpion法により高感度高特異度に検出する。このプローブは蛍光色素と発色を減弱するクエンチャーを組み合わせており、プローブがPCR産物に結合するとクエンチャーと蛍光色素がはなれて発色反応がおこることを利用している。 |
| Taqman probe法 | Taqmanプローブ（Taqmanプローブ）を用いたリアルタイムPCR法。 |

*: 上記のほか、Pyrosequencing法などがある。

**: 上記のほか、denaturing HPLC、DGGE（denaturing gradient gel electrophoresis）、LH-MSA法などがある。

***: 上記のほか、PCR-RFLP法、iPLEX法、SMAP法、HRMA（high resolution melting analysis）法などがある。
第 4.1 版から第 4.2 版への改訂点

● 9-10 頁

改訂前
「また the US Food and Drug Administration Adverse Event Reporting System (FAERS) database をもちいた解析では, EGFR-TKI 関連 ILD の発現頻度は第一・第二世代 EGFR-TKI で 2.1-6.9%であるのに対しオシメルチニブは 10.7%である 22」

上記、発現頻度という表記が誤解を招くため、削除し、

改訂後
「またタグリッソ®の使用成績調査の結果から, オシメルチニブの ILD 発現頻度は 6.8%（245 症例/3578 症例）で, ILD 発現に関する多変量ロジスティック回帰モデル解析結果では「間質性肺疾患の病歴」と「ニボルマブ前治療歴」が有意なリスク因子と示唆された 22」