文献検索と採択
2-1.確定診断
- 推 奨
- 一部の手術例を除き,組織もしくは細胞診断は治療開始前に行うように勧められる。その方法としては,経気管支生検,経皮生検,胸腔鏡下生検,開胸生検などがあり,患者の状況と施設の状況から適切な方法を用いるべきである。(グレードA)
- a.中枢気管支の病変を疑った場合に気管支鏡を施行するよう勧められる。(グレードA)
- b.肺結節の確定診断については病変の大きさ,性状,部位などにより診断率が異なることを考慮のうえで,経気管支肺生検を施行するように勧められる。(グレードB)
- c.経皮針生検は気管支鏡で診断困難な肺結節,縦隔病変の診断に有効であるが,空気塞栓,腫瘍細胞の播種,気胸などの合併症の可能性を考慮し,適応症例を選択したうえで経皮針生検を行うことを考慮してもよい。(グレードC1)
- d.胸腔鏡,開胸肺生検は,気管支鏡や経皮針生検と比較して侵襲が大きいため,その必要性を十分に考慮し,胸腔鏡下肺生検を行うよう考慮してもよい。(グレードC1)
エビデンス
- a・b.中心型肺癌に対する気管支鏡の診断感度は88%で,鉗子生検の感度は74%,洗浄細胞診,ブラシ細胞診の感度は48%,59%と報告されている1)。末梢型肺癌に対する気管支鏡の感度は78%で,鉗子生検の感度は57%,洗浄細胞診,ブラシ細胞診の感度は43%,54%と報告されている1)。診断感度は病変の大きさに依存し,2cm以上の病変は63%,2cm未満は34%と報告されている1)。
2010年に日本呼吸器内視鏡学会認定および関連施設で,すべての疾患に診断的に行われた気管支鏡件数は103,978件(うち,中枢気道病変24,283件,末梢孤立性病変60,275件)で,それぞれの合併症の頻度は1.32%(出血0.89%),1.55%(出血0.63%,気胸0.44%)であった2)。
近年,肺癌診断に以下の技術,手技が導入されている。中心型早期肺癌を検出するために自家蛍光気管支鏡が検討されており3)〜9),中心型早期癌および化生病変に対する感度が上昇すると報告されている10)〜15)。同様の目的で狭域帯光観察気管支鏡が検討されている15)〜17)。
気管支腔内超音波断層法(EBUS)に関しては,リンパ節の転移診断および気管支壁外に近接する病変に対し,コンベックス型EBUS下の経気管支針生検(EBUS-TBNA)が実施されるようになった18)。EBUSを使うことで診断率, 感度が向上することが報告されている19)〜24)。EBUS-TBNAのリンパ節転移診断の感度は縦隔鏡とほぼ同等で25)26),縦隔鏡単独より超音波内視鏡(EBUS+EUS-FNA(経食道超音波内視鏡下穿刺吸引))を併用したほうが感度が高いことが報告されている27)。一方,EBUS-TBNAでは到達不可能なリンパ節があり,対象とするリンパ節の部位,数,大きさ,PETやCT所見,実施施設の経験症例数などにより診断感度が異なる28)。中心型肺癌に対しても,EBUS-TBNAの追加による診断感度向上と迅速細胞診併用の有用性を示した報告がある29)。
ラディアル型EBUSは中心型肺癌の気管支壁深達度の評価に有用であることが報告されている30)。ラディアル型EBUSは末梢病変の診断にも有用とされ1),X線透視で見えない病変に対する報告31)や小型病変に対する診断率の向上32)33),経気管支針生検(TBNA)の併用が有効であること34)が報告されている。メタアナリシスでは肺癌検出の感度は73%と報告されているが,対象集団の癌の割合,病変のサイズによって異なる35)。ガイドシース併用ラディアル型EBUSは,CTガイド下経皮生検と比較し2cm未満の病変に対する診断率は劣るが,合併症は有意に少ないこと36),診断寄与因子として,病変内に超音波プローブが存在することが報告されている37)。一方,EBUSの経験の乏しい術者を含めた研究でガイドシース併用ラディアル型EBUSを使用しても感度が上昇しなかった報告もある38)。
肺末梢小型病変に対して診断率の向上を目的として,細径および極細径気管支鏡39)40),仮想気管支鏡によるナビゲーションシステム41)42)が臨床に導入され評価が集積されつつあり,細径気管支鏡とラディアル型EBUSを組み合わせた手法において,ナビゲーションにより診断率が向上し,検査時間が短縮されることが報告された43)。極細径気管支鏡とX線透視を組み合わせた手法では,ナビゲーションはCTで肺野外層に存在する病変,右上葉の病変,X線写真で見えない病変に有効と報告された44)。CTガイド下の気管支鏡検査が診断感度を向上させるかは,評価が分かれている45)46)。CTガイド下極細径気管支鏡の診断寄与因子は気管支鏡の挿入観察範囲と関与気管支の有無との報告がある47)。これらの手法のメタアナリシスでは,仮想気管支鏡ナビゲーション,ガイドシース法,極細径気管支鏡,ラディアル型EBUSの診断率は72.0%,73.2%,70.0%,71.1%と報告されている48)。
- c.経皮針生検の適応は,肺結節の確定診断だけでなく,手術不能症例の縦隔病変の確定診断も含む。従来,経皮吸引細胞診が行われ,その肺癌診断能はメタアナリシス49)では感度86%,特異度98%と報告されている。吸引細胞診では悪性病変の偽陰性率が高いため,近年は生検を行うことが多く51)52),肺癌診断における感度は75〜95%,特異度は90〜100%程度である51)〜56)。さらに精度を高めるために,超音波57),CT透視58)59),MPR60)61)の利用などが行われてきた。照射線量を軽減する為にC-arm cone-beam CT 59)62)〜64)や,MRIガイド下に実施するとする報告もある65)。2013年のACCPガイドラインでは,経皮針生検の診断感度は90%ではあるが2cm以下の病変の診断率は低く,TBLBと比較して合併症が多いのが問題であるとされている1)。
診断向上に寄与する因子として,大きい病変,上葉の病変が報告されている66)67)。近年ではGGN病変に対しても経皮針生検が有用であるとする報告がある68)〜70)。また使用する針は,Tru-cut-type針のほうが,modified Menghini-typeより診断率が高いと報告されている71)。
経皮針生検の主たる合併症は気胸と出血で,その頻度は気胸が15〜25%,喀血をきたす出血が2〜6%程度である51)〜56)72)73)。気胸発生の危険因子には,小病変,肺気腫の存在,胸膜から2cm以内の病変,太い針の使用などが挙げられ74)〜76),2cm以下の病変での気胸発生は28.4%(チューブ挿入2.5%)77),1cmの病変で気胸が62%(チューブ挿入31%)78)79)と報告されている。また頻度は少ないが,その他の合併症として空気塞栓(0.21〜0.4%)80)81),胸膜播種(0.06〜0.56%)80)82)〜84)がある。経皮針生検施行例で胸膜播種が多い報告85)と,変わりがない報告86)や,5年生存率には差がない報告がある87)88)。
- d.胸腔鏡による診断の良い適応89)〜91)となるのは胸膜に近い病変である。画像診断で悪性が強く疑われ,経気管支肺生検や経皮生検による診断が困難な症例では胸腔鏡による診断を施行される場合もある92)〜95)。EBUSによる生検が困難な縦隔リンパ節の生検にも適応がある95)〜97)。
胸腔鏡による診断は,ほぼ100%の感度,特異度をもつ90)98)。しかし全身麻酔が必要で侵襲が高く,手術による死亡率は0〜0.5%,合併症の頻度は3〜9.6%で,その内訳は,無気肺,肺炎,エアリークが含まれる89)90)96)。
通常は前処置は不要であるが,小結節や胸膜から遠い位置にある病変,淡い病変などは術前にマーキングが必要となる99)〜101)。気胸,出血,マーカーの消失や脱落などの合併症に留意する必要がある。また非常に稀であるが空気塞栓の報告例がある102)。
近年,胸水貯留例に診断と胸水ドレナージ,胸膜癒着術などの治療をかねて,局所麻酔下胸腔鏡(medical thoracoscopy, pleuroscopy)が行われ,感度94〜95.4%,特異度100%と報告されている103)104)。
引用文献
気管支鏡
- 1)Rivera MP, Mehta AC, Wahidi MM. Establishing the Diagnosis of Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2013; 143(5 Suppl): e142S-65S.(I)
- 2)Asano F, Aoe M, Ohsaki Y, et al. Deaths and complications associated with respiratory endoscopy: a survey by the Japan Society for Respiratory Endoscopy in 2010. Respirology. 2012; 17(3): 478-85. (IV)
- 3)Sutedja TG, Codrington H, Risse EK, et al. Autofluorescence bronchoscopy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest. 2001; 120(4): 1327-32. (IV)
- 4)Kusunoki Y, Imamura F, Uda H, et al. Early detection of lung cancer with laser-induced fluorescence endoscopy and spectrofluorometry. Chest. 2000; 118(6): 1776-82. (III)
- 5)Lam S, Kennedy T, Unger M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest. 1998; 113(3): 696-702. (III)
- 6)Furukawa K, Kakihana M, Ikeda N, et al. Fluorescence bronchoscopy of premalignant and in the early detection malignant lesions. J Jpn Soc Respir Endoscopy. 2000; 22(8): 629-35. (III)
- 7)Banerjee AK, Rabbitts PH, George J. Lung cancer. 3: Fluorescence bronchoscopy: clinical dilemmas and research opportunities. Thorax. 2003; 58(3): 266-71. (VI)
- 8)Chiyo M, Shibuya K, Hoshino H, et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer. 2005; 48(3): 307-13. (III)
- 9)Ikeda N, Honda H, Hayashi A, et al. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer. 2006; 52(1): 21-7. (IV)
- 10)Häussinger K, Becker H, Stanzel F, et al. Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial. Thorax. 2005; 60(6): 496-503. (II)
- 11)Kennedy TC, McWilliams A, Edell E, et al. Bronchial intraepithelial neoplasia/early central airways lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007; 132(3 Suppl): 221S-233S. (I)
- 12)Chen W, Gao X, Tian Q, et al. A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer. 2011; 73(2): 183-8. (I)
- 13)Sun J, Garfield DH, Lam B, et al. The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis. J Thorac Oncol. 2011; 6(8): 1336-44. (I)
- 14)Wang Y, Wang Q, Feng J, et al. Comparison of autofluorescence imaging bronchoscopy and white light bronchoscopy for detection of lung cancers and precancerous lesions. Patient Prefer Adherence. 2013; 7: 621-31.(I)
- 15)Wisnivesky JP, Yung RC, Mathur PN, et al. Diagnosis and treatment of bronchial intraepithelial neoplasia and early lung cancer of the central airways: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143(5 Suppl): e263S-77S.(I)
- 16)Herth FJ, Eberhardt R, Anantham D, et al. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J Thorac Oncol. 2009; 4(9): 1060-5. (II)
- 17)Shibuya K, Nakajima T, Fujiwara T, et al. Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogenesis in squamous cell carcinoma of the lung. Lung Cancer. 2010; 69(2): 194-202. (IV)
- 18)Yasufuku K, Chiyo M, Sekine Y, et al. Real-time endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal and hilar lymph nodes. Chest. 2004; 126(1): 122-8. (IV)
- 19)Herth F, Becker HD, Ernst A. Conventional vs endobronchial ultrasound-guided transbronchial needle aspiration: a randomized trial. Chest. 2004; 125(1): 322-5. (II)
- 20)Wallace MB, Pascual JM, Raimondo M, et al. Minimally invasive endoscopic staging of suspected lung cancer. JAMA. 2008; 299(5): 540-6. (III)
- 21)Detterbeck FC, Jantz MA, Wallace M, et al. Invasive mediastinal staging of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007; 132(3 Suppl): 202S-220S. (I)
- 22)Gu P, Zhao YZ, Jiang LY, et al. Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: a systematic review and meta-analysis. Eur J Cancer. 2009; 45(8): 1389-96. (I)
- 23)Varela-Lema L, Fernandez-Villar A, Ruano-Ravina A. Effectiveness and safety of endobronchial ultrasound-transbronchial needle aspiration: a systematic review. Eur Respir J. 2009; 33(5): 1156-64. (IV)
- 24)Du Rand IA, Barber PV, Goldring J, et al. British Thoracic Society guideline for advanced diagnostic and therapeutic flexible bronchoscopy in adults. Thorax. 2011; 66 Suppl 3: iii1-21. (I)
- 25)Ernst A, Anantham D, Eberhardt R, et al. Diagnosis of mediastinal adenopathy-real-time endobronchial ultrasound guided needle aspiration versus mediastinoscopy. J Thorac Oncol. 2008; 3(6): 577-82. (III)
- 26)Yasufuku K, Pierre A, Darling G, et al. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J Thorac Cardiovasc Surg. 2011; 142(6): 1393-400. e1. (III)
- 27)Annema JT, van Meerbeeck JP, Rintoul RC, et al. Mediastinoscopy vs endosonography for mediastinal nodal staging of lung cancer: a randomized trial. JAMA. 2010; 304(20): 2245-52. (II)
- 28)Ost DE, Ernst A, Lei X, et al. Diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration: results of the AQuIRE Bronchoscopy Registry. Chest. 2011; 140(6): 1557-66. (IV)
- 29)Mondoni M, Carlucci P, Di Marco F, et al. Rapid on-site evaluation improves needle aspiration sensitivity in the diagnosis of central lung cancers: a randomized trial. Respiration. 2013; 86(1): 52-8.(II)
- 30)Kurimoto N, Murayama M, Yoshioka S, et al. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion. Chest. 1999; 115(6): 1500-6. (IV)
- 31)Herth FJ, Eberhardt R, Becker HD, et al. Endobronchial ultrasound-guided transbronchial lung biopsy in fluoroscopically invisible solitary pulmonary nodules: a prospective trial. Chest. 2006; 129(1): 147-50. (IV)
- 32)Paone G, Nicastri E, Lucantoni G, et al. Endobronchial ultrasound-driven biopsy in the diagnosis of peripheral lung lesions. Chest. 2005; 128(5): 3551-7. (II)
- 33)Sánchez-Font A, Giralt L, Vollmer I, et al. Endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions. A controlled study with fluoroscopy. Arch Bronconeumol. 2014; 50(5): 166-71.(II)
- 34)Chao TY, Chien MT, Lie CH, et al. Endobronchial ultrasonography-guided transbronchial needle aspiration increases the diagnostic yield of peripheral pulmonary lesions: a randomized trial. Chest. 2009; 136(1): 229-36. (II)
- 35)Steinfort DP, Khor YH, Manser RL, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J. 2011; 37(4): 902-10. (I)
- 36)Fielding DI, Chia C, Nguyen P, et al. Prospective randomised trial of endobronchial ultrasound-guide sheath versus computed tomography-guided percutaneous core biopsies for peripheral lung lesions. Intern Med J. 2012; 42(8): 894-900.(II)
- 37)Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004; 126(3): 959-65. (IV)
- 38)Roth K, Eagan TM, Andreassen AH, et al. A randomised trial of endobronchial ultrasound guided sampling in peripheral lung lesions. Lung Cancer. 2011; 74(2): 219-25. (II)
- 39)Shinagawa N, Yamazaki K, Onodera Y, et al. CT-guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004; 125(3): 1138-43. (IV)
- 40)Oki M, Saka H, Kitagawa C, et al. Novel thin bronchoscope with a 1.7-mm working channel for peripheral pulmonary lesions. Eur Respir J. 2008; 32(2): 465-71. (IV)
- 41)Asano F, Matsuno Y, Tsuzuku A, et al. Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath. Lung Cancer. 2008; 60(3): 366-73. (IV)
- 42)Tachihara M, Ishida T, Kanazawa K, et al. A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer. 2007; 57(3): 322-7. (IV)
- 43)Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011; 66(12): 1072-7. (II)
- 44)Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med. 2013; 188(3): 327-33.(II)
- 45)Tsushima K, Sone S, Hanaoka T, et al. Comparison of bronchoscopic diagnosis for peripheral pulmonary nodule under fluoroscopic guidance with CT guidance. Respir Med. 2006; 100(4): 737-45. (IV)
- 46)Ost D, Shah R, Anasco E, et al. A randomized trial of CT fluoroscopic-guided bronchoscopy vs conventional bronchoscopy in patients with suspected lung cancer. Chest. 2008; 134(3): 507-13. (II)
- 47)Matsuno Y, Asano F, Shindoh J, et al. CT-guided ultrathin bronchoscopy: bioptic approach and factors in predicting diagnosis. Intern Med. 2011; 50(19): 2143-8. (IV)
- 48)Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012; 142(2): 385-93.(I)
経皮針生検
- 49)Lacasse Y, Wong E, Guyatt GH, et al. Transthoracic needle aspiration biopsy for the diagnosis of localised pulmonary lesions: a meta-analysis. Thorax. 1999; 54(10): 884-93. (I)
- 50)Choi SH, Chae EJ, Kim JE, et al. Percutaneous CT-guided aspiration and core biopsy of pulmonary nodules smaller than 1 cm: analysis of outcomes of 305 procedures from a tertiary referral center. AJR Am J Roentgenol. 2013; 201(5): 964-70.(IV)
- 51)Greif J, Marmur S, Schwarz Y, et al. Percutaneous core cutting needle biopsy compared with fine-needle aspiration in the diagnosis of peripheral lung malignant lesions: results in 156 patients. Cancer. 1998; 84(3): 144-7. (IV)
- 52)Laurent F, Latrabe V, Vergier B, et al. Percutaneous CT-guided biopsy of the lung: comparison between aspiration and automated cutting needles using a coaxial technique. Cardiovasc Intervent Radiol. 2000; 23(4): 266-72. (IV)
- 53)Hayashi N, Sakai T, Kitagawa M, et al. CT-guided biopsy of pulmonary nodules less than 3cm: usefulness of the spring-operated core biopsy needle and frozen-section pathologic diagnosis. AJR Am J Roentgenol. 1998; 170(2): 329-31. (IV)
- 54)Laurent F, Latrabe V, Vergier B, et al. CT-guided transthoracic needle biopsy of pulmonary nodules smaller than 20mm: results with an automated 20-gauge coaxial cutting needle. Clin Radiol. 2000; 55(4): 281-7. (IV)
- 55)Charig MJ, Phillips AJ. CT-guided cutting needle biopsy of lung lesions--safety and efficacy of an out-patient service. Clin Radiol. 2000; 55(12): 964-9. (IV)
- 56)Tsukada H, Satou T, Iwashima A, et al. Diagnostic accuracy of CT-guided automated needle biopsy of lung nodules. AJR Am J Roentgenol. 2000; 175(1): 239-43. (IV)
- 57)Schubert P, Wright CA, Louw M, et al. Ultrasound-assisted transthoracic biopsy: cells or sections? Diagn Cytopathol. 2005; 33(4): 233-7. (IV)
- 58)Gilbert S, Zhang H, Villeneuve PJ, et al. Optimizing health care resource utilization in the surgical management of patients with suspected lung cancer. Ann Thorac Surg. 2012; 94(5): 1667-72.(IV)
- 59)Braak SJ, Herder GJ, van Heesewijk JP, et al. Pulmonary masses: initial results of cone-beam CT guidance with needle planning software for percutaneous lung biopsy. Cardiovasc Intervent Radiol. 2012; 35(6): 1414-21.(III)
- 60)Kimura T, Naka N, Minato Y, et al. Oblique approach of computed tomography guided needle biopsy using multiplanar reconstruction image by multidetector-row CT in lung cancer. Eur J Radiol. 2004; 52(2): 206-11. (IV)
- 61)Ohno Y, Hatabu H, Takenaka D, et al. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules. Eur J Radiol. 2004; 51(2): 160-8. (IV)
- 62)Lee SM, Park CM, Lee KH, et al. C-arm cone-beam CT-guided percutaneous transthoracic needle biopsy of lung nodules: clinical experience in 1108 patients. Radiology. 2014; 271(1): 291-300.(IV)
- 63)Tam AL, Kim ES, Lee JJ, et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol. 2013; 8(4): 436-42.(III)
- 64)Choi JW, Park CM, Goo JM, et al. C-arm cone-beam CT-guided percutaneous transthoracic needle biopsy of small(≤ 20 mm)lung nodules: diagnostic accuracy and complications in 161 patients. AJR Am J Roentgenol. 2012; 199(3): W322-30.(IV)
- 65)Liu M, Lv Y, Wu L, et al. MRI-guided percutaneous coaxial cutting needle biopsy of small pulmonary nodules: feasibility. Eur Radiol. 2013; 23(10): 2730-8.(IV)
- 66)Montaudon M, Latrabe V, Pariente A, et al. Factors influencing accuracy of CT-guided percutaneous biopsies of pulmonary lesions. Eur Radiol. 2004; 14(7): 1234-40. (IV)
- 67)Guimarães MD, Chojniak R, Gross JL, et al. Predictive success factors for CT-guided fine needle aspiration biopsy of pulmonary lesions. Clinics (Sao Paulo). 2009; 64(12): 1139-44. (IV)
- 68)Lu CH, Hsiao CH, Chang YC, et al. Percutaneous computed tomography-guided coaxial core biopsy for small pulmonary lesions with ground-glass attenuation. J Thorac Oncol. 2012; 7(1): 143-50. (IV)
- 69)Yamauchi Y, Izumi Y, Nakatsuka S, et al. Diagnostic performance of percutaneous core needle lung biopsy under multi-CT fluoroscopic guidance for ground-glass opacity pulmonary lesions. Eur J Radiol. 2011; 79(2): e85-9. (IV)
- 70)Yamagami T, Yoshimatsu R, Miura H, et al. Diagnostic performance of percutaneous lung biopsy using automated biopsy needles under CT-fluoroscopic guidance for ground-glass opacity lesions. Br J Radiol 2013; 86(1022): 20120447.(IV)
- 71)Tombesi P, Nielsen I, Tassinari D, et al. Transthoracic ultrasonography-guided core needle biopsy of pleural-based lung lesions: prospective randomized comparison between a Tru-cut-type needle and a modified Menghini-type needle. Ultraschall Med. 2009; 30(4): 390-5. (II)
- 72)Gianfelice D, Lepanto L, Perreault P, et al. Value of CT fluoroscopy for percutaneous biopsy procedures. J Vasc Interv Radiol. 2000; 11(7): 879-84.(IV)
- 73)Manhire A, Charig M, Clelland C, et al. Guidelines for radiologically guided lung biopsy. Thorax. 2003; 58(11): 920-36. (IV)
- 74)Cox JE, Chiles C, McManus CM, et al. Transthoracic needle aspiration biopsy: variables that affect risk of pneumothorax. Radiology. 1999; 212(1): 165-8. (IV)
- 75)Yeow KM, See LC, Lui KW, et al. Risk factors for pneumothorax and bleeding after CT-guided percutaneous coaxial cutting needle biopsy of lung lesions. J Vasc Interv Radiol. 2001; 12(11): 1305-12. (IV)
- 76)Geraghty PR, Kee ST, McFarlane G, et al. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003; 229(2): 475-81. (IV)
- 77)Ohno Y, Hatabu H, Takenaka D, et al. CT-guided transthoracic needle aspiration biopsy of small (< or = 20mm) solitary pulmonary nodules. AJR Am J Roentgenol. 2003; 180(6): 1665-9. (IV)
- 78)Wallace MJ, Krishnamurthy S, Broemeling LD, et al. CT-guided percutaneous fine-needle aspiration biopsy of small (< or =1-cm) pulmonary lesions. Radiology. 2002; 225(3): 823-8. (IV)
- 79)Li Y, Du Y, Yang HF, et al. CT-guided percutaneous core needle biopsy for small(≤20 mm)pulmonary lesions. Clin Radiol. 2013; 68(1): e43-8.(IV)
- 80)Ibukuro K, Tanaka R, Takeguchi T, et al. Air embolism and needle track implantation complicating CT-guided percutaneous thoracic biopsy: single-institution experience. AJR Am J Roentgenol. 2009; 193(5): W430-6. (IV)
- 81)Hiraki T, Fujiwara H, Sakurai J, et al. Nonfatal systemic air embolism complicating percutaneous CT-guided transthoracic needle biopsy: four cases from a single institution. Chest. 2007; 132(2): 684-90. (V)
- 82)Kim JH, Kim YT, Lim HK, et al. Management for chest wall implantation of non-small cell lung cancer after fine-needle aspiration biopsy. Eur J Cardiothorac Surg. 2003; 23(5): 828-32. (V)
- 83)Robertson EG, Baxter G. Tumour seeding following percutaneous needle biopsy: the real story! Clin Radiol. Clin Radiol. 2011; 66(11): 1007-14. (VI)
- 84)Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol. 2011; 196(6): W678-82. (IV)
- 85)Matsuguma H, Nakahara R, Kondo T, et al. Risk of pleural recurrence after needle biopsy in patients with resected early stage lung cancer. Ann Thorac Surg. 2005; 80(6): 2026-31. (IV)
- 86)Asakura K, Izumi Y, Yamauchi Y, et al. Incidence of pleural recurrence after computed tomography-guided needle biopsy in stage I lung cancer. PLoS One. 2012; 7(8): e42043.(III)
- 87)Wisnivesky JP, Henschke CI, Yankelevitz DF. Diagnostic percutaneous transthoracic needle biopsy does not affect survival in stage I lung cancer. Am J Respir Crit Care Med. 2006; 174(6): 684-8. (IV)
- 88)Inoue M, Honda O, Tomiyama N, et al. Risk of pleural recurrence after computed tomographic-guided percutaneous needle biopsy in stage I lung cancer patients. Ann Thorac Surg. 2011; 91(4): 1066-71. (IV)
- 89)Bogot NR, Shaham D. Semi-invasive and invasive procedures for the diagnosis and staging of lung cancer. II. Bronchoscopic and surgical procedures. Radiol Clin North Am. 2000; 38(3): 535-44.(VI)
胸腔鏡,肺生検
- 90)Murasugi M, Onuki T, Ikeda T, et al. The role of video-assisted thoracoscopic surgery in the diagnosis of the small peripheral pulmonary nodule. Surg Endosc. 2001; 15(7): 734-6. (IV)
- 91)Hazelrigg SR, Nunchuck SK, LoCicero J 3rd. Video Assisted Thoracic Surgery Study Group data. Ann Thorac Surg. 1993; 56(5): 1039-43; discussion 1043-4. (IV)
- 92)Nakajima J, Sato H, Takamoto S. Does preoperative transbronchial biopsy worsen the postsurgical prognosis of lung cancer? A propensity score-adjusted analysis. Chest. 2005; 128(5): 3512-8. (IV)
- 93)Voltolini L, Rapicetta C, Luzzi L, et al. Pattern of recurrence and survival of c-Ia NSCLC diagnosed by transpleural methods. J Cardiovasc Surg (Torino). 2008; 49(5): 697-702. (IV)
- 94)Krishna G, Gould MK. Minimally invasive techniques for the diagnosis of peripheral pulmonary nodules. Curr Opin Pulm Med. 2008; 14(4): 282-6. (IV)
- 95)Walker CM, Chung JH, Abbott GF, et al. Mediastinal lymph node staging: from noninvasive to surgical. AJR Am J Roentgenol. 2012; 199(1): W54-64. (IV)
- 96)Roberts JR, Blum MG, Arildsen R, et al. Prospective comparison of radiologic, thoracoscopic, and pathologic staging in patients with early non-small cell lung cancer. Ann Thorac Surg. 199; 68(4): 1154-8. (III)
- 97)De Leyn P, Dooms C, Kuzdzal J, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2014; 45(5): 787-98.(I)
- 98)Jiménez MF. Prospective study on video-assisted thoracoscopic surgery in the resection of pulmonary nodules: 209 cases from the Spanish Video-Assisted Thoracic Surgery Study Group. Eur J Cardiothorac Surg. 2001; 19(5): 562-5. (III)
- 99)Suzuki K, Nagai K, Yoshida J, et al. Video-assisted thoracoscopic surgery for small indeterminate pulmonary nodules: indications for preoperative marking. Chest. 1999; 115(2): 563-8. (IV)
- 100)Saito H, Minamiya Y, Matsuzaki I, et al. Indication for preoperative localization of small peripheral pulmonary nodules in thoracoscopic surgery. J Thorac Cardiovasc Surg. 2002; 124(6): 1198-202. (IV)
- 101)Seo JM, Lee HY, Kim HK, et al. Factors determining successful computed tomography-guided localization of lung nodules. J Thorac Cardiovasc Surg. 2012; 143(4): 809-14. (IV)
- 102)Sato K, Miyauchi K, Shikata F, et al. Arterial air embolism during percutaneous pulmonary marking under computed tomography guidance. Jpn J Thorac Cardiovasc Surg. 2005; 53(7): 404-6. (V)
- 103)Lee P, Hsu A, Lo C, et al. Prospective evaluation of flex-rigid pleuroscopy for indeterminate pleural effusion: accuracy, safety and outcome. Respirology. 2007; 12(6): 881-6. (IV)
- 104)Medford AR, Agrawal S, Free CM, et al. A local anaesthetic video-assisted thoracoscopy service: prospective performance analysis in a UK tertiary respiratory centre. Lung Cancer. 2009; 66(3): 355-8. (IV)
